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Recent advances in technology have made it possible to fabricate structures
whose dimensions are much smaller than the mean free path of an electron.
This is the first text-book to give a thorough account of the theory of elec-
tronic transport in such mesoscopic systems. Important concepts are illus-
trated by reference to relevant experimental results.

The book begins with a chapter summarizing the necessary background
material. The next chapter introduces the ‘transmission formalism” which is
widely used in describing mesoscopic transport. The applicability of this for-
malism to different transport regimes is examined and practical methods for
evaluating the transmission function are discussed. This formalism is then
used to describe three key topics in mesoscopic physics: quantum Hall effect,
localization, and double-barrier tunneling. Optical analogies to mesoscopic
phenomena are discussed briefly. The book closes with a simple intuitive
description of the non-equilibrium Green’s function formalism and its rela-
tion to the transmission formalism.

Emphasizing basic concepts and techniques throughout, and complete with
problems and solutions, the book will be of great interest to graduate students
as well as to established researchers interested in mesoscopic physics and
nanoelectronics.
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A few common symbols
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A few common symbols

length

mean free path
phase-relaxation length
effective mass

free electron mass

number of transverse modes
(areal) electron density
(2-D) density of states

reflection amplitude
reflection probability
resistance

area

time

transmission amplitude
temperature
transmission probability
transmission function

potential energy
velocity

drift velocity

Fermi velocity
electrostatic potential
width

energy broadening
cutoff energy

unit step function

Fermi wavelength
mobility

electrochemical potential
attempt frequency

linear density of scatterers
(2-D) resistivity

cm
cm
cm
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value is 0.067 m,. We will
generally use 0.07 m; in
our examples
9.1 X 10 kg
dimensionless
Jem?
= m/nth®
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dimensionless
Q
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A few common symbols Xv

o (2-D) conductivity Q!

)3 advanced self-energy

= retarded self-energy (eV) in a discrete
o inscattering function representation
™  outscattering function

Ty momentum-relaxation time

T, phase-relaxation time

w21 cyclotron frequency

Please note that we have often used the terms ‘electrochemical potential® (u)
and ‘quasi-Fermi energy’ (F,) interchangeably.

A webpage has been set up at
http://dynamo.ecn.purdue.edu/ ~ datta/etms.html or
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where additional information related to this book will be posted.



Introductory remarks

It is well-known that the conductance (G) of a rectangular two-
dimensional conductor is directly proportional to its width (W) and
inversely proportional to its length (L); that is,

G = oW/L

where the conductivity o is a material property of the sample independent
of its dimensions. How small can we make the dimensions (W and/or L)
before this ohmic behavior breaks down? This question has intrigued
scientists for a long time. During the 1980s it became possible to fabri-
cate small conductors and explore this question experimentally, leading
to significant progress in our understanding of the meaning of resistance
at the microscopic level. What emerged in the process is a conceptual
framework for describing current flow on length scales shorter than a
mean free path. We believe that these concepts should be useful to a
broad spectrum of scientists and engineers. This book represents an
attempt to present these developments in a form accessible to graduate
students and to non-specialists.

Small conductors whose dimensions are intermediate between the
microscopic and the macroécopic are called mesoscopic. They are much
larger than microscopic objects like atoms, but not large enough to be
‘ohmic’. A conductor usually shows ohmic behavior if its dimensions are
much larger than each of three characteristic length scales: (1) the de
Broglie wavelength, which is related to the kinetic energy of the elec-
trons, (2) the mean free path, which is the distance that an electron
travels before its initial momentum is destroyed and (3) the phase-
relaxation length, which is the distance that an electron travels before its
initial phase is destroyed. These length scales vary widely from one
material to another and are also strongly affected by temperature,
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1 mm
Mean free path in the quantum
Hall regime
100 pm
Mean free path / Phase-relaxation length
» in high mobility semiconductors at T < 4 K
10 pm
1pm

Commercial semiconductor devices (1990)

l 100 nm
de Broglie wavelength in semiconductors

10 nm Mean free path in polycrystalline metal films

de Broglie wavelength in metals
Distance between atoms

1A

Fig. 0.1. A few relevant length scales. Note that
1pm=10%m=10"cm
1 nm = 10~° m = 10 angstroms (A).

magnetic field etc. (Fig. 0.1). For this reason, mesoscopic transport
phenomena have been observed in conductors having a wide range of
dimensions from a few nanometers to hundreds of microns (that is,
micrometers).

Mesoscopic conductors are usually fabricated by patterning a planar
conductor that has one very small dimension to start with. For example,
Fig. 0.2 shows a ring-shaped conductor having dimensions ~ 100 nm,
patterned out of a polycrystalline gold film ~ 40 nm thick. This is the
structure that was used for one of the landmark experiments in
mesoscopic physics: the resistance of this ring was shown to oscillate as
the magnetic field through it was changed because the magnetic field
modified the interference between the electron waves traversing the two
arms of the ring.

Although some of the pioneering experiments in this field were
performed using metallic conductors, most of the recent work has been
based on the gallium arsenide (GaAs)-aluminum gallium arsenide
(AlGaAs) material system. Figure 0.3 shows a Hall bridge patterned out
of a conducting layer ~ 10 nm thick formed at a GaAs—AlGaAs inter-
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Fig. 0.2. Transmission electron micrograph of a ring-shaped resistor made from a

38 nm film of polycrystalline gold. The diameter of the ring is 820 nm and the

thickness of the wires is 40 nm. Reproduced with permission from S. Washburn and

R. A. Webb (1986). Adv. Phys. 35, 375. The structures were fabricated by
C. Umbach of IBM.

face. Four-terminal resistance measurements on such narrow conductors
revealed many surprises, including negative resistance, that defied
common sense (at least, common sense as extrapolated from macro-
scopic conductors).

In this book we will generally emphasize the work on semiconductors.
However, the issues we will discuss have very little to do with device
concepts or applications. There is an obvious difference in perspective
between those interested in basic transport physics and those interested in
device applications. From the point of view of basic physics the objective
is to identify paradigms that help lay a clear conceptual framework for
the subject. Low temperature low bias measurements are well suited for
this purpose, because under these conditions the current is carried only by
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Fig. 0.3. Scanning electron micrograph of a long wire 75 nm wide patterned from a

GaAs—AlGaAs heterojunction. Four-terminal Hall measurements are made using

voltage probes placed along the wire ~ 2 um. apart. Reproduced with permission from

M. L. Roukes, A. Scherer, S. J. Allen, H. G. Craighead, R. M. Ruthen, E. D. Beebe
and J. P. Harbison (1987), Phys. Rev. Lett. 59, 3011.

electrons at the Fermi energy. This is analogous to doing optical experi-
ments with a monochromatic source. On the other hand, the commercial
market for ‘low temperature low bias devices’ is severely limited.
Interesting devices usually operate at room temperature under high bias
such that transport occurs over a broad band of energies. Moreover, scat-
tering processes are much stronger at higher temperatures. Most of the
phenomena we will discuss would be washed out under these operating
conditions. The only exception to this is resonant tunneling (see Chapter
6); useful device characteristics based on this phenomenon have been
demonstrated at room temperature. But even with resonant tunneling we
discuss only the basic physics and do not do justice to the device-related
issues. We do not discuss the different material systems in which resonant
tunneling has been observed or the different types of resonant tunneling
phenomena (such as I'-X tunneling or interband tunneling) that have
been observed. Instead we focus on conceptual issues like the difference
between coherent and sequential tunneling or between resonant tunneling
and single-electron tunneling.

We have tried to emphasize basic concepts and techniques at the
expense of details, as is appropriate for a text book. The few references at
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the end of each chapter are largely review articles and tutorial discus-
sions. For a thorough review of this field we refer the reader to the article
by C. W. J. Beenakker and H. van Houten entitled ‘Quantum transport in
semiconductor nanostructures’ appearing in Solid State Physics, vol. 44,
eds. H. Ehrenreich and D. Turnbull (New York, Academic Press, 1991).
This article also provides a fairly comprehensive list of references until
1990.

Since we expect our readers to come from different backgrounds, we
will start in Chapter 1 with a brief review of some basic concepts.

In Chapter 2 we discuss a concept that has proved very useful in under-
standing mesoscopic transport, namely that the current flow through a
conductor is proportional to a ‘transmission function’ describing the ease
with which electrons can transmit through it. The applicability of this
concept to different regimes of transport is critically examined. In Chapter
3 we describe methods for calculating the transmission function. At the
same time we relate the transmission formalism to other formalisms that
are widely used in the literature.

Chapters 4, 5 and 6 use the transmission formalism to describe three
major paradigms of mesoscopic physics namely the quantum Hall effect,
localization and double-barrier tunneling. In Chapter 7 we briefly explore
the similarities and differences between electron waves and electro-
magnetic waves pointing out optical analogies to different mesoscopic
phenomena. The discussion is qualitative and can be read at any stage
without much reference to the rest of the book.

Finally in Chapter 8 we describe the non-equilibrium Green’s function
formalism which is conceptually more complicated than the transmission
formalism, but is more generally applicable. Indeed it provides a general
framework for quantum transport in weakly interacting systems similar to
that provided by the Boltzmann formalism for semiclassical transport.

All our discussions are based on a simple one-particle picture. We have
avoided the use of advanced concepts like second quantized operators,
even when discussing advanced topics like the Green’s function formal-
ism. Section 5.5 and Chapter 8 are relatively more difficult and could be
skipped depending on the background of the students. But we believe
that, with a little effort, even these sections can be understood by stu-
dents who have taken a graduate level course in quantum mechanics.

Each chapter starts with an introduction and ends with a brief summary.
It is followed by a set of detailed exercises designed to complement the
material covered in the chapter. The solutions to these exercises are pro-
vided at the end of the book.



1

Preliminary concepts

1.1 Two-dimensional electron gas (2-DEG)

1.2 Effective mass, density of states etc.

1.3 Characteristic lengths

1.4 Low-field magnetoresistance

1.5 High-field magnetoresistance

1.6 Transverse modes (or magneto-electric subbands)
1.7 Drift velocity or Fermi velocity?

We start this chapter with a brief review of some basic concepts. First in
Section 1.1 we introduce the gallium arsenide (GaAs)/aluminum gallium
arsenide (AlGaAs) material system which provides a very high quality
two-dimensional conduction channel and has been widely used in meso-
scopic experiments. Section 1.2 summarizes the free electron model that
is commonly used to describe conduction electrons in metals and semi-
conductors. Next we discuss different characteristic lengths like the de
Broglie wavelength, mean free path and the phase-relaxation length
which determine the length scale at which mesoscopic effects appear
(Section 1.3). The variation of resistance in the presence of a magnetic
field is widely used to characterize conducting films. Both the low-field
properties (Section 1.4) and the high-field properties (Section 1.5) yield
valuable information regarding the electron density and mobility.

In Section 1.6 we introduce the concept of transverse modes which
plays a prominent role in the theory of mesoscopic conductors and will
appear repeatedly in this book. Finally in Section 1.7 we address an
important conceptual issue that arises in the description of degenerate
conductors, that is, conductors with a Fermi energy that is much greater
than ks7. Normally we view the current as being carried by all the

6




L1 Two-dimensional electron gas 7

conduction electrons which drift along slowly. However, in degenerate
conductors it is more appropriate to view the current as being carried by a
few electrons close to the Fermi energy which move much faster. One
consequence of this is that the conductance of degenerate conductors is
determined by the properties of electrons near the Fermi energy rather
than the entire sea of electrons.

1.1 Two-dimensional electron gas (2-DEG)

Recent work on mesoscopic conductors has largely been based on GaAs—
AlGaAs heterojunctions where a thin two-dimensional conducting layer is
formed at the interface between GaAs and AlGaAs. To understand why
this layer is formed consider the conduction and valence band line-up in
the z-direction when we first bring the layers in contact (Fig. 1.1.1a). The
Fermi energy E: in the widegap AlGaAs layer is higher than that in the
narrowgap GaAs layer. Consequently electrons spill over from the

@ /

Surface

n-AlGaAs i-GaAs

N

Fig. 1.1.1. Conduction and valence band line-up at a junction between an n-type

AlGaAs and intrinsic GaAs, (a) before and (b) after charge transfer has taken place.

Note that this is a cross-sectional view. Patterning (as shown in Fig. 0.3) is done on
the surface (x-y plane) using lithographic techniques.
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n-AlGaAs leaving behind positively charged donors. This space charge

gives rise to an electrostatic potential that causes the bands to bend as
shown. At equilibrium the Fermi energy is constant everywhere. The elec-

tron density is sharply peaked near the GaAs—AlGaAs interface (where
the Fermi energy is inside the conduction band) forming a thin conduct-
ing layer which is usually referred to as the two-dimensional electron gas
(2-DEG in short). The carrier concentration in a 2-DEG typically ranges
from 2 x 10"/cm? to 2 x 10'%/cm? and can be depleted by applying a neg-
ative voltage to a metallic gate deposited on the surface. The practical
importance of this structure lies in its use as a field effect transistor [1.2,
1.3] which goes under a variety of names such as MODFET (MOdulation
Doped Field Effect Transistor) or HEMT (High Electron Mobility
Transistor).

Note that this structure is similar to standard silicon MOSFETs, where
the 2-DEG is formed in silicon instead of GaAs. The role of the wide-gap
AlGaAs is played by a thermally grown oxide layer (SiO;x). Indeed much
of the pioneering work on the properties of two-dimensional conductors
was performed using silicon MOSFETs [1.4].

Mobility
What makes the 2-DEG in GaAs very special is the extremely low scat-
tering rates that have been achieved. The mobility (at low temperatures)
provides a direct measure of the momentum relaxation time as limited by
impurities and defects. Let us first briefly explain the meaning of mobil-
ity. In equilibrium the conduction electrons move around randomly not
producing any current in any direction. An applied electric field E gives
them a drift velocity v, in the direction of the force ¢E as shown in Fig.
1.1.2. To relate the drift velocity to the electric field we note that, at

—
— Ditt v,

velocity,

Fig. 1.1.2. In the presence of an electric field the electrons acquire a drift velocity
superposed on their random motion.




1.1 Two-dimensional electron gas 9

steady-state, the rate at which the electrons receive momentum from the
external field is exactly equal to the rate at which they lose momentum
(p) due to scattering forces:

(&)™ 2]
At Jscatterng | A2 | fiera

Hence, (7 n: momentum relaxation time)

mvy et
= eE = Vy= hady E
Tm m

The mobility is defined as the ratio of the drift velocity to the electric
field:
Va

_leftn (1.1.1)
m

I,l,-

Mobility measurement using the Hall effect (see Section 1.5) is a basic
characterization tool for semiconducting films. Once the mobility is
known, the momentum relaxation time is readily deduced from Eq.(1.1.1).

In bulk semiconductors as we go down from room temperature, the
momentum relaxation time increases at first due to the suppression of
phonon scattering. But it does not increase any further once the phonon
scattering is small enough that impurity scattering becomes the dominant
mechanism (see Fig. 1.1.3). With a donor concentration of 10'’/cm? the
highest mobility is less than 10* cm?*/V s. Higher mobilities can be ob-
tained with undoped samples but this is not very useful since there are
very few conduction electrons.

In a 2-DEG, on the other hand, carrier concentrations of 10'*/cm? in a
layer of thickness ~100 A (equivalent bulk concentration of 10'%/cm?)
have been obtained with mobilities in excess of 10° cm?/V s (the current
record is almost an order of magnitude larger than what is shown in Fig.
1.1.3). The reason is the spatial separation between the donor atoms in the
AlGaAs layer and the conduction electrons in the GaAs layer. This
reduces the scattering cross-section due to the impurities, leading to
weaker scattering. Often an extra buffer layer of undoped AlGaAs is intro-
duced between the GaAs and the n-AlGaAs in order to increase the
separation between the 2-DEG in the GaAs and the ionized donors in the
AlGaAs. This reduces the scattering but it also reduces the carrier
concentration.
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Ivtllll T T ll'lll' Y T

Mobility (cm?2/Vs)

]

'l lllllll A A lllllll A A

10
Temperature (l()102

Fig. 1.1.3. Mobility vs. temperature in modulation-doped structures. Higher mobility

(but lower carrier concentration) is obtained with thicker buffer layers. Also shown for

comparison is the mobility in (a) high purity bulk GaAs and in (b) doped GaAs for use

in FETs. Adapted with permission from Fig. 9 of T. J. Drummond, W. T. Masselink
and H. Morkoc (1986). Proc. IEEE, 74, 779. © 1986 IEEE

1.2 Effective mass, density of states etc.

Effective mass equation
Electronic conduction in semiconductors can take place either through
electrons in the conduction band or through holes in the valence band.
However, most experiments on mesoscopic conductors involve the flow of
electrons in the conduction band and in this book we will assume that this
is the case. The dynamics of electrons in the conduction band can be
described by an equation of the form

E.

. (i_hVZ_:_?_‘i)_ +U(r) [W(r) = E%(r) 1.2.1)
m




1.2 Effective mass, density of states 11

where U(r) is the potential energy due to space-charge etc., A is the vec-
tor potential and m is the effective mass. Although Eq.(1.2.1) looks just
like the Schrodinger equation it is really what is called a single-band
effective mass equation. The lattice potential, which is periodic on an
atomic scale, does not appear explicitly in Eq.(1.2.1); its effect is incor-
porated through the effective mass m which we will assume to be
spatially constant. Any band discontinuity AE. at heterojunctions is in-
corporated by letting E. be position-dependent.

It should be noted that the wavefunctions that we calculate from
Eq.(1.2.1) are not the true wavefunctions but are smoothed out versions
that do not show any rapid variations on the atomic scale. This can be
seen easily by considering a homogeneous semiconductor with U(r) = 0,
A =0 and E. = constant. The wavefunctions satisfying Eq.(1.2.1) have the
form of plane waves

W(r) = exp[ikr]
and not that of Bloch waves

W(r) = ux(r) exp[ikr]

since the lattice potential is not included. The simplified description
based on the single-band effective mass equation, Eq.(1.2.1), is usually
adequate for conduction band electrons at low fields in GaAs—AlGaAs
heterostructures and we will adopt it throughout this book. A review of the
techniques used for detailed calculations of electronic states in hetero-
structures that go beyond the single-band effective mass equation can be
found in the article by G. Bastard, J. A. Brum and R. Ferreira (1991),
entitled ‘Electronic states in semiconductor heterostructures’, in Solid
State Physics, vol. 44, eds. H. Ehrenreich and D. Turnbull, (New York,
Academic Press).

Subbands

Consider the 2-DEG shown in Fig. 1.1.1b. The electrons are free to propa-
gate in the x—y plane but are confined by some potential U(z) in the
z-direction. The electronic wavefunctions in such a structure (with A = 0,
assuming zero magnetic field) can be written in the form

W(r) = ¢n(2) exp(ikzx) exp(ikyy)
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with the dispersion relation:
hz 2 2
E=E.+e,+—ki+k
'm ( 4 )

The index n numbers the different subbands each having a different wave-
function ¢.(z) in the z-direction and a cut-off energy &,. Usually at low
temperatures with low carrier densities only the lowest subband with
n =1 is occupied and the higher subbands do not play any significant
role. We can then ignore the z-dimension altogether and simply treat the
conductor as a two-dimensional system in the x—y plane. Specifically,
instead of Eq.(1.2.1) we will use the following equation:

. (inV + eA)

2m

E; +U(x,y) |W(x,y) = E¥(x,y) (1.22)

where E; = E; + £1. We will generally adopt this simplification throughout
the book when discussing semiconductors. With metallic films, however,
the electron density is so high that even a film of thickness 10 nm has
several tens of occupied subbands and it is more accurate to treat it as a
three-dimensional conductor.

Band diagrams

For a free electron gas in the absence of magnetic fields, the eigenfunc-
tions are obtained from Eq.(1.2.2) by setting U = 0 and A = 0. The eigen-
functions normalized to an area S have the form

1

Y(x,y) = — exp(ik.x)exp(ik 1.2.3
(y)ﬁp()p(yy) (12.3)

with eigenenergies given by

hz 2 2

E=Ei+o—(k + &) (12.4)
The dispersion relation (Eq.(1.2.4)) is sketched in Fig. 1.2.1a. It is also
common to draw band diagrams in real space (see Fig. 1.2.1b) showing

only the bottom of the band (corresponding to k, = k, = 0) and the Fermi
energy.
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©® ®
'
E; (ot F,) —— E (otFy)
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E.
— >
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Fig. 1.2.1. (a) Dispersion relation for a free electron gas in two dimensions. Note that

the bottom of the two-dimensional subband, E; lies a little higher than the conduction

band edge E. in the bulk material. (b) Band diagram in real space showing only the

bottom of the band and the Fermi energy, Er. Under non-equilibrium conditions there

is no common Fermi energy but one can often talk in terms of a quasi-Fermi level F,.

(¢) Assuming periodic boundary conditions, k; and k, take on quantized values
depending on the dimensions of the sample.

Density of states
Let us first calculate the total number of states Nt(E) having an energy
less than E. To do this we have to count the number of states contained
within a circle of radius & (see Fig. 1.2.1c), where
Kk

E=F+
2m

We need to know the values of k.—k, that are allowed by the boundary
conditions. For a large area conductor the real boundary conditions have
minimal effect on the result, so that we could just as well use any bound-
ary condition that is convenient. It is common to use the periodic bound-
ary conditions which require k. and k, to take on quantized values
depending on the dimensions L, and L, of the sample (n. and n, are inte-

gers):
k: =n.(2n/L;) and k, =n,(27/L,) (1.2.5)
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Thus the area in the k., plane ‘occupied’ by an individual state is given
by (S: area of the conductor)

2::2:: 4

L. Ly S
while the area enclosed by the circle is a*. Hence (for E > E,)

wk? £

Nz(E) = 2 (for spin) x s S

o7 (E E)

This is the total number of states. The density of states per unit area per
unit energy is given by

N(E)-ld—dE-NT(E)= _S(E-E) (1.2.6)

where @ is the unit step function (see list of symbols). Thus the
two-dimensional density of states is constant for all energies exceeding
the subband energy E;. It is approximately equal to 2.9 x 10'%/cm? meV if
m = 0.07 times the free electron mass (a value typical of GaAs).

Degenerate and non-degenerate conductors

At equilibrium the available states in a conductor are filled up according
to the Fermi function

1

fE)=13 exp[(E - E¢ YkoT |

(1.2.7)

where E; is the Fermi energy. Away from equilibrium the system has no
common Fermi energy, but often we can talk in terms of a local quasi-
Fermi level which can vary spatially and which can be different for dif-
ferent groups of states (such as electrons and holes) even at the same
spatial location. We will generally use F, to denote quasi-Fermi levels
and reserve E; for the equilibrium Fermi energy.

There are two limits in which the Fermi function inside the band
(E > E,) can be simplified somewhat making it easier to perform numeri-
cal calculations (see Fig. 1.2.2). One is the high temperature or the non-
degenerate limit (exp[Es — E]/ksT >> 1) where

fo(E) ~ exp[~(E - E¢YksT] (1.2.8)
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(a) Non-degenerate limit
fo (E)
E » E
Es
(b) Degenerate limit
- » E
Es E¢

Fig. 1.2.2. The Fermi function inside the band (E > Es) can be approximated by (a)
Eq.(1.2.8) in the non-degenerate limit and (b) by Eq.(1.2.9) in the degenerate limit.

The other is the low temperature or the degenerate limit
(exp[Es - E¢)/ksT << 1) where

fo(E) ~ NE: - E) (1.2.9)

In this book we will mainly be discussing degenerate conductors.
To relate the equilibrium electron density ns (per unit area) to the
Fermi energy we make use of the relation

ns = [ N(E) fo( E)E
For degenerate conductors it is easy to perform the integral to obtain
ns = N,(E;: - E,) where N, = m/nh’ (1.2.10)

where we have made use of Egs.(1.2.6) and (1.2.9).

At low temperatures the conductance is determined entirely by elec-
trons with energy close to the Fermi energy. The wavenumber of such
electrons is referred to as the Fermi wavenumber (k¢):

272
E;-E, = hz—kf- = Tk = \2m(E; - E,) (1.2.11)
m

Using Eq.(1.2.10) we can express the Fermi wavenumber in terms of the
electron density:
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ke = \[27n, (12.12)

The corresponding velocity is the Fermi velocity v; = #iki/m.

1.3 Characteristic lengths

A conductor usually shows ohmic behavior if its dimensions are much
larger than certain characteristic lengths, namely, (1) the de Broglie
wavelength, (2) the mean free path, and (3) the phase-relaxation length.
We will discuss these one by one. In addition to these characteristic
lengths, the screening length can also play a significant role especially in
low-dimensional conductors as we will see in Section 2.3 (see Fig. 2.3.3).

Wavelength (1)

We have seen (Eq.(1.2.12)) that the Fermi wavenumber k; goes up as the
square root of the electron density. The corresponding wavelength goes
down as the square root of the electron density:

At = 2m/ke = \|27/n, (1.3.1)

For an electron density of 5 x 10'"/cm?, the Fermi wavelength is about
35 nm. At low temperatures the current is carried mainly by electrons
having an energy close to the Fermi energy so that the Fermi wavelength
is the relevant length. Other electrons with less kinetic energy have
longer wavelengths but they do not contribute to the conductance.

Mean free path (L)

An electron in a perfect crystal moves as if it were in vacuum but with a
different mass. Any deviation from perfect crystallinity such as impurities,
lattice vibrations (phonons) or other electrons leads to ‘collisions’ that
scatter the electron from one state to another thereby changing its mo-
mentum. The momentum relaxation time 7, is related to the collision
time t. by a relation of the form

1 1

—_— — QO
Tm Te

where the factor am (lying between 0 and 1) denotes the ‘effectiveness’
of an individual collision in destroying momentum. For example if the




1.3 Characteristic lengths 17

collisions are such that the electrons are scattered only by a small angle
then very little momentum is lost in an individual collision. The factor oy
is then very small so that the momentum relaxation time is much longer
than the collision time. For a more detailed discussion of scattering times
in semiconductors see, for example, Chapter 4 of S. Datta (1989),
Quantum Phenomena, Modular Series on Solid-state Devices, vol. VIII,
eds. R. F. Pierret and G. W. Neudeck, (New York, Addison-Wesley).

The mean free path, L, is the distance that an electron travels before
its initial momentum is destroyed; that is,

Ly=viTa (1.3.2)

where Tn is the momentum relaxation time and v; is the Fermi velocity.
The Fermi velocity is given by

ve =%-;’:—«/21ms —+3x10"cm/s if n, =~5x10"/cm?

Assuming a momentum relaxation time of 100 ps we obtain a mean free
path of Ly = 30 pm.

Phase-relaxation length (Lg)

Let us first discuss what is meant by the phase-relaxation time (7,). We
will then relate it to the phase-relaxation length. In analogy with the mo-
mentum relaxation time we could write

1 1

—_— i — aq’
T, Tc

where the factor ¢, denotes the effectiveness of an individual collision in
destroying phase. The destruction of phase is, however, a little more
subtle than the destruction of momentum. A more careful discussion is re-
quired to define what the effectiveness factor a, is for different types of
scattering processes.

One way to visualize the destruction of phase is in terms of a thought
experiment involving interference. For example suppose we split a beam
of electrons into two paths and then recombine them as shown in Fig.
1.3.1. In a perfect crystal the two paths would be identical resulting in
constructive interference. By applying a magnetic field perpendicular to
the plane containing the paths, one can change their relative phase (see
for example, R. P, Feynman, (1965), Lectures on Physics, vol.II, Section
15-5, (New York, Addison—Wesley) thereby changing the interference
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Path 1

Path 2

Fig. 1.3.1. A conceptual interference experiment involving the splitting of a beam of
electrons and later recombining them.

alternately from constructive to destructive and back. Now suppose we
are not in a perfect crystal but in a real one with collisions due to
impurities, phonons etc. We would expect the interference amplitude to
be reduced by a factor

exp[—‘r,/'rq,]

where T, is the transit time that the electron spends in each arm of the
interferometer. Let us use this thought experiment to define the phase-
relaxation time 7, and hence the effectiveness factor o,. Actually it is
more than a thought experiment. The experiment with the mesoscopic
ring referred to earlier (see Fig. 0.2) could be viewed as a laboratory
implementation of this thought experiment.

Consider first what happens if we introduce impurities and defects ran-
domly into each arm. The two arms are then no longer identical so that
the interference may not be constructive at zero magnetic field. But the
point is that as long as the impurities and defects are static there is a
definite phase-relationship between the two paths and as we increase the
magnetic field we would go through alternate cycles of constructive and
destructive interference whose amplitude is unaffected by the length of
each arm. We thus conclude that for static scatterers

T, —> o (thatis ap, — 0)

This is confirmed by the fact that the resistance of a ring-shaped conduc-
tor (see Fig. 0.2) is observed to oscillate as a function of the magnetic
field even though each arm is hundreds of mean free paths long.

The situation is different when we take into account the effect of a
dynamic scatterer like lattice vibrations (phonons). The phase-relation-
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ship between the scattered waves in the two arms now varies randomly
with time so that there is no stationary interference pattern. At a fixed
value of the magnetic field the scattered waves show random variations
from constructive to destructive interference which time-average to zero.
Interference can only be observed between the unscattered components,
whose amplitude decreases exponentially with the length of each arm.

Another important source of phase-randomizing collisions is electron—
electron interactions. Electrons scatter off other electrons (which are not
stationary) due to their mutual Coulomb repulsion. Interestingly the mean
free path (Ln) is not affected by electron—electron scattering processes.
This is because such processes do not lead to any loss in the net momen-
tum. Any momentum lost by one electron is picked up by another.
Consequently the effectiveness factor an is zero for such processes
though @, is non-zero.

Impurity scattering too can be phase-randomizing if the impurity has an
internal degree of freedom so that it can change its state. For example,
magnetic impurities have an internal spin that fluctuates with time.
Collisions with such impurities thus cause phase-relaxation. This has been
observed in measurements on mesoscopic gold rings, where the oscilla-
tions in the resistance in a magnetic field were destroyed when man-
ganese impurities were introduced by ion implantation. Interestingly the
oscillations are quenched only at low magnetic fields but are still
observed at high magnetic fields. The reason is that at high magnetic
fields the energies of the different spin states separate due to the spin
splitting. Once this splitting exceeds ks7T, spin fluctuations are suppressed
and the magnetic impurity behaves like an ordinary rigid impurity with no
internal degree of freedom (see the article by A. Benoit ef al. in Anderson
Localization, eds. T. Ando and H. Fukuyama, vol. 28 of Springer
Proceedings in Physics, p.346).

The basic point is that rigid scatterers do not contribute to phase-
relaxation; only fluctuating scatterers do. This is also in agreement with
what one might have expected from a more philosophical argument. As
Feynman describes in his lectures (see Lectures on Physics, vol. III,
Section 1-1, (New York, Addison—Wesley 1965)), the interference
between two paths is destroyed whenever we perform an experiment that
allows us to tell which path the electron took. If on one of the paths an
electron interacts with a scatterer causing it to change its state, then by
measuring the state of the scatterer we can tell which path the electron
took. Consequently such interactions destroy interference related effects.
For a more detailed discussion of the equivalence of the two viewpoints
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see A. Stern, Y. Aharonov and Y. Imry (1990). Phys. Rev. A, 41, 3436. See
also the article by A. Leggett (1989) in Nanostructure Physics and
Fabrication, eds. M. A, Reed and W. P. Kirk (New York, Academic
Press).

The next question is: given a fluctuating scatterer, what is the associ-
ated phase-relaxation time? One might be tempted to guess that it should
simply be equal to the collision time:

Ty —> Tc

However, this is not necessarily true. For example, suppose we have a
phonon that affects both arms of the ring equally (Fig. 1.3.1). In that case
the phase associated with the two arms is randomized in a correlated way
so that their phase difference is unaffected. Such a process should not af-
fect the interference. Thus we would expect long wavelength phonons to
be less effective in destroying phase. It has been argued (see B. L.
Altshuler, A. G. Aronov and D. E. Khmelnitsky (1982). J. Phys. C., 15,
7367) that for a phonon with energy %w, the mean squared energy spread
of an electron after a time 7, is obtained by multiplying the square of the
energy change per collision by the number of collisions

(8e)” = (hw)” (To/rc)

T T T T T | —
102 ;.
F A
.TA L
8 L
°
S 101 - =
1010 —
[ 1 Lo 1 L1
0.2 1.0 5.0
(K)

Fig. 1.3.2. Inverse phase-relaxation time (deduced from weak localization data asa

function of temperature for a GaAs sample having ns=1.6 x 10""/cm?,

@ =27 000 cm?/V s. Reproduced with permission from Fig. 2 of K. K. Choi, D. C.
Tsui and K. Alavi (1987), Phys. Rev. B, 36, 7751.




1.3 Characteristic lengths 21

The phase-relaxation time T, is defined as the time after which the mean
squared spread in the phase is of order one; that is,

AQ ~(AE)T/h~1 — Ty ~(T/0?)"?

showing that low frequency phonons are less effective in relaxing phase.
Usually at low temperatures the dominant source of phase-relaxation is
electron—electron scattering. An electron is scattered by the fluctuating
potential that it feels due to the other electrons. The frequency of
electron—electron scattering depends on the excess energy of the
electrons relative to the Fermi energy. An electron with a small excess
energy A (=E - Ey) has very few states to scatter down into since most
states below it are already full. For this reason, the scattering is strongly
suppressed by the exclusion principle as A tends to zero. The precise
dependence of the phase-relaxation time on A depends on the
dimensionality of the conductor. In a 2-DEG it has the form (see A.
Yacoby et al. (1991), Phys.. Rev. Lett. 66, 1938 and references therein)

2
i ~ A [ln(-E—f) + constant]
T¢ Ef A

Since the average excess energy of thermal electrons is ~ kg7, the de-
pendence of the phase-relaxation time on temperature is obtained simply
by replacing A with kgT.

An additional complication arises in low-mobility conductors having
h/Tw > ksT. The phase-relaxation time due to electron—electron scatter-
ing then has an additional component which in two dimensions depends
linearly on temperature (see K. K. Choi et al. (1987), Phys. Rev. B, 36,
7751 and references therein). In low-mobility conductors the phase-
relaxation time is usually obtained from weak localization experiments.
This is an interference experiment that is conceptually more complicated
than the simple two-arm interference in a ring-shaped conductor. We will
discuss it in detail in Chapter 5. Here we simply show the measured
phase-relaxation time as a function of the temperature to give the reader
a feel for the order of magnitude of the times involved in low-mobility
semiconductors (Fig. 1.3.2).

Now that we have discussed the phase-relaxation time (t,), let us see
how it is related to the phase-relaxation length (L,). The obvious ap-
proach is to multiply by the Fermi velocity:

Ly = vit, (1.3.3)
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Phase-coherent
region

Elastic
scatterers

Diffusive motion
over a phase-coherent
region

Fig. 1.3.3. For 1, >> Tm, transport within a phase-coherent region is diffusive since
there are many elastic scatterers.

This is true if the phase-relaxation time is of the same order or shorter
than the momentum relaxation time, that is, if T, ~ T, Which is often the
case with high-mobility semiconductors.

But with low-mobility semiconductors or polycrystalline metal films
the momentum relaxation time can be considerably shorter than the
phase-relaxation time: 7, >> T7n. We then have the situation depicted in
Fig. 1.3.3. The motion of electrons over a phase-relaxation time is not bal-
listic. After an interval of time T the velocity is completely randomized
so that the electronic trajectory over a length of time t, can be visual-
ized as the sum of a number (= T,/tw) of short trajectories each of length
~ VrTm. Since the individual trajectories are directed in random directions
(8), the root mean squared distance traveled by the electron in a
particular direction is obtained by summing the squares of their lengths:

+x
L= :—:—(wtm)2<cos2 8) where (cos’6)m f g—z- cos’ @ -—;—
-

Hence L% = vitaT,/2 (1.3.42)
As we will see later (see Eq.(1.7.8)) the diffusion coefficient is given by
D = vita/2

so that L} = D, (1.3.4b)
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1.4 Low-field magnetoresistance

Drude model

Conductivity measurement in a weak magnetic field (generally referred
to as a Hall measurement) is one of the basic tools used to characterize
semiconducting films. This is because it allows us to deduce the carrier
density n; and the mobility u individually, while the zero field conductiv-
ity only tells us the product of the two.

As we discussed for the zero field case (see Eq.(1.1.1)), at steady-state,
the rate at which the electrons receive momentum from the external field
is exactly equal to the rate at which they lose momentum due to scatter-

. g E
dt scattering dt field

that is, (T»: momentum relaxation time)

':v" ~E+vq xB] (14.1)

We can rewrite Eq.(1.4.1) in the form

m/eT, ~B | v: E,

+B mleta \v, ) \E
where vx, v, are the x- and y- components of the drift velocity and E,, E,
are the x- and y- components of the electric field. The current density J

(per unit width) is related to the electron density ns(per unit area) by the
relation J = evan,, so that we can write

m/eTn —B |(J:/en\ (E:
+B  mleta \J,/en, ) \E,

Rearranging we obtain
E, 1 - J;
=0 HB 1.42)
E, +uB 1 \J,

where O'Elelnsu and p=|elru/m. Noting that the resistivity tensor is

defined by the relation
( x) l: ]( x)
Ey Pyx Py Jy
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we can write from Eq.(1.4.2)

P =07 (1.4.3a)

Py = —Px = (uB)o = Bl|eln, (1.4.3b)

Thus this simple Drude model predicts that the longitudinal resistance is
constant while the Hall resistance increases linearly with magnetic field.

Experiment

Experimentally the resistivity tensor is measured by preparing a rectangu-
lar sample, setting up a uniform current flow along the x-direction and
measuring the longitudinal voltage drop V, = (V; - V;) and the transverse
(or Hall) voltage drop Vy = (V2 — V3) (Fig. 1.4.1). Since J, =0, we can
write

E; =pyJ: and E, = p,J;

It is easy to see that I =J, W, V., = E;L and V4 = E,W. Hence the resistivi-
ties p and p,. are related to the longitudinal and transverse voltages by

Lx ” ‘H
o = ——— d x ==
P T L an Py: 7

Figure 1.4.2 shows the measured longitudinal voltage V, and the trans-
verse voltage Vu for a modulation-doped GaAs film using a rectangular
Hall bridge with W =0.38 mm and L =1mm and a current of
I=25.5pnA. At low magnetic fields the longitudinal voltage is nearly

¥ le—2 o v
I v I
I w I
) |
y V3
4.
v AR
Vu= V% -V;

Fig. 1.4.1. Rectangular Hall bar for magnetoresistance measurements. The magnetic
field is in the z-direction perpendicular to the plane of the conductor.



1.4 Low-field magnetoresistance 25
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Fig. 1.4.2. Measured longitudinal and transverse voltages for a modulation-doped

GaAs film at T= 1.2 K (/ = 25.5 pA). Reproduced with permission from Fig. 1 of M.

E. Cage, R. F. Dziuba and B. F. Field (1985), IEEE Trans. Instrum. Meas. IM-34,
301. © 1985 IEEE

constant whiie the Hall voltage increases linearly in agreement with the
predictions of the semiclassical Drude model described above. At high
fields, however, the longitudinal resistance shows pronounced oscillatory
behavior while the Hall resistance exhibits plateaus corresponding to the
minima in the longitudinal resistance. These features are usually absent
at room temperature or even at 77 K but quite evident at cryogenic tem-
peratures of 4 K and below. To understand these features we need to go
beyond the Drude model and discuss the formation of Landau levels
which is a quantum mechanical effect. That is what we will do in the
next section.

Before we proceed it should be mentioned that we can obtain the car-
rier density n, and the mobility u from the measured low-field resistivities
Px= and p,. using Egs.(1.4.3a,b):

dpy 1" _ _Ule|
- - 144
i [Iel dB dVis/dB (1.4.42)
— le| (1.4.4b)

lelmos  mViW/L

For this reason, Hall measurement is a basic characterization tool for
semiconducting films (see Exercise E.1.2 at the end of this chapter).
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1.5 High-field magnetoresistance

A comparison of the experimental data in Fig. 1.4.2 with the predictions
of the Drude model (see Egs.(1.4.3a,b)) shows clear disagreement at high
magnetic fields. There are oscillations in the longitudinal resistivity o,
which are referred to as Shubnikov-deHaas (or SdH) oscillations. Such
oscillations are not unique to 2-D conductors and were first observed in
bulk metals back in 1930. However, in 2-D semiconductors the effect is
much larger. The minimum Jongitudinal resistivity p,, is very nearly zero
and there appear plateaus in the Hall resistivity p,, whenever p,, goes
through a minimum. We will discuss these plateaus later in Chapter 4.
For the moment let us concentrate on the SdH oscillations.

Origin of SdH oscillations
We will now try to explain the basic phenomenon underlying the SdH
oscillations and show how we can deduce the carrier density from the
period of the oscillations. Basically, the SdH oscillations arise because at
high magnetic fields, the step-like density of states associated with a
2-DEG (see Eq.(1.2.6))

N.(E)= 5 E - E)
zth

breaks up into a sequence of peaks spaced by hw. (neglecting Zeeman
splitting) where w. = eB/m is the cyclotron frequency (B: magnetic field):
N.(E,B) ~ 3‘-’-1326[15 -E, - (n+$)hoc (1.5.1)
h n=0
This is illustrated in Fig. 1.5.1. The spikes are ideally true delta functions.
But in practice scattering processes spread them out in energy. As we
change the magnetic field B, the energies of the Landau levels change.
The resistivity p. goes through one cycle of oscillation as the Fermi en-
ergy moves from the center of one Landau level to the center of the next
Landau level. This affords a simple method for calculating the electron
density from the oscillations in p., which we will now describe.

It can be seen from Eq.(1.5.1) that for a given electron density ns, we
can calculate the number of occupied Landau levels simply by dividing
by 2eB/h. For example, if B =2 T then 2eB/h = 9.6 x 10'°/cm’. Hence if
n, =5 x 10""/cm?, then

=52
2eB/h
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Energy, E
E,
@— Zero magnetic field
E .
E, >

Density of states, N(E)

Fig. 1.5.1. Density of states Ny(E,B) vs. energy E for a 2-DEG in a magnetic field.
Note that E, = Es+ (n + 0.5) hoc.

Hence five Landau levels are fully occupied while the sixth one is
partially occupied. As we change the magnetic field B the number of
occupied Landau levels changes. The resistivity p.. goes through a
maximum every time this number is a half-integer and the Fermi energy
lies at the center of a Landau level. Hence the magnetic field values B,
and B, corresponding to two successive peaks must be related by

ng _ ng =1
2eBi/h  2eBy/h

2e 1

hat e
so tha m= WE) - (UB)

We could choose many different values B; and B, corresponding to any
pair of successive peaks. They should all yield approximately the same
result for the carrier density. The usual procedure is to plot the positions
of the maxima in p,. as a function of 1/B. They should lie in a straight
line and the slope of this straight line gives the electron density (see
Exercise E.1.2 at the end of this chapter).

Now that we understand the basic factor underlying SdH oscillations,
let us try to explain why the density of states develops peaks at high
magnetic fields as shown in Fig. 1.5.1.

Why do discrete states form at high magnetic fields?

A proper answer to this question requires us to start from the Schrodinger
equation including a vector potential to represent the magnetic field and
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L

x

Fig. 1.5.2. Circular path described by a classical particle in a (z-directed) magnetic
field.

calculate its eigenfunctions and eigenvalues. This is done in Section 1.7.
However, the basic idea is easy to see using a simple classical argument.

Classically, an electron in a magnetic field goes round in a circular or-
bit as sketched in Fig. 1.5.2 (this is straightforward to show starting from
Newton’s law: mdv/dt = ev x B). The radius of the circle is proportional to
the electron velocity, v:

re = V. (1.5.2)

where w. = eB/m. Classically the electron can have any velocity v and
thus move on a circular path of any radius .. Quantum mechanically,
however, the circumference must be an integer number () of de Broglie
wavelengths:

2nr. = nh/imv (1.5.3)
From Eqs.(1.5.2) and (1.5.3) we find that the kinetic energy can only have
discrete values given by mv?/2 = nhw./2. Hence we would expect that
E, = E + n(hw/2)

This is a little different from the correct answer obtained from a proper
quantum mechanical treatment

E,-E, =(n+})ho. (1.5.4)

These energy levels E, with different values of n are referred to as Landau
levels. The density of states is peaked at energies corresponding to the
Landau levels

Ny(E,B)~ Noi JE - E, - (n+$)hooc |

as stated earlier in Eq.(1.5.1). The correct prefactor No can be obtained by
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noting that the magnetic field causes all the states in an energy range
hw. to be concentrated into a single Landau level. Since the 2-D density
of states is m/wh® it seems reasonable to expect that

No = hew x (m/mh*) = 2eB/h

How high does the magnetic field need to be before the resistivity is af-
fected by the formation of Landau levels? The answer is that an electron
should be able to complete at least a few orbits before losing its momen-
tum due to scattering; that is,

wc‘l << Tp

We would arrive at the same criterion if we argue that the peaks in the
density of states will be evident only if their spacing Aw. is much greater
than the broadening caused by scattering:

hwe >> B/Tn

Noting that . =|e|B/m and pu =|elran/m we can rewrite this criterion in
the form

B>>u™!

Thus the SdH oscillations arising from the formation of Landau levels are
visible at lower magnetic fields for high mobility samples. If the mobility
is 105 cm?/V s (or in MKS units 10’ m?/V s) then the magnetic field has
to be in excess of 1072 T or 100 G for quantum effects to be manifest. The
electron density deduced from the SdH data is usually somewhat smaller
than that deduced from the low field data. This is because the low field
data gives the total electron density including for example any leakage
paths through the AlGaAs. But leakage paths are typically associated
with low mobilities and do not contribute any observable SdH effect at
reasonable magnetic fields.

1.6 Transverse modes (or magneto-electric subbands)

In this section we will discuss the concept of transverse modes or sub-
bands which will appear repeatedly in this book. These are analogous to
the transverse modes (TEio, TMn1 etc.) of electromagnetic waveguides. In
narrow conductors, the different transverse modes are well separated in
energy and such conductors are often called electron waveguides.
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We consider a rectangular conductor that is uniform in the x-direction
and has some transverse confining potential U(y) (see Fig. 1.6.1). The
motion of electrons in such a conductor is described by the effective mass
equation (see Eq.(1.2.2))

E.+ +UQ) ¥(x,y) = E¥(x,)

(ihV +eA)
2m
We assume a constant magnetic field B in the z-direction perpendicular

to the plane of the conductor. This can be represented by a vector poten-
tial of the form

A=-%By = A, =-By and A, =0

so that Eq.(1.2.2) can be rewritten as

2

E,+M+I’—’+U(y) W(x,y) = E¥(x,y) (1.6.1)
2m 2m

. d ., 0
where p,-—xh; and p,-—lh-b—y—

The solutions to Eq.(1.6.1) can be expressed in the form of plane waves
(L: length of conductor over which the wavefunctions are normalized)

W(xy) = 7 expfiker) (162)

where the transverse function x(y) satisfies the equation

2 2
. (hk +eBy)

E, > + é’—’ +UW) |x() = Ex(y) (1.6.3)
m m

Note that the choice of vector potential is not unique for the given mag-
netic field. For example we could choose A; =0 and A, = -Bx. The solu-
tions would then look very different though the physics of course must
remain the same. It is only with our choice of gauge, that the solutions
have the form of plane waves in the x-direction. We will use this gauge in
all our discussions.

We are interested in the nature of the transverse eigenfunctions and the
eigenenergies for different combinations of the confining potential U and
the magnetic field B. In general for arbitrary confinement potentials U(y)
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Fig. 1.6.1. A rectangular conductor assumed to be uniform in the x-direction and
having some transverse confining potential U(y).

there are no analytical solutions. However, for a parabolic potential
(which is often a good description of the actual potential in many elec-
tron waveguides)

UG) - 3 moiy’

analytical solutions can be written down and this is what we will discuss
in this section. Later in Chapter 4 we will discuss an approximate solution
that can be used at high magnetic fields for arbitrary confining potentials.
An interesting discussion of the relation between the quantum mechanical
solutions and the classical trajectories can be found in Section 12 of
Ref.[1.1].

Confined electrons (U = 0) in zero magnetic field (B = 0)

Consider first the case of zero magnetic field, so that Eq.(1.6.3) reduces
to
Wk p?

E+—+ 2L+ mwoy x() = Ex(y) (1.6.4)
2m 2m 2

The eigenfunctions of Eq.(1.6.4) are well-known (see any quantum
mechanics text such as L. I. Schiff (1968), Quantum Mechanics, Third
Edition, (New York, McGraw—Hill) Section 13) The eigenenergies and
eigenfunctions are given by

Xni(Y) =un(q) Where q=.mwolhy (1.6.52)

272

E(n,k)=FE, + + (n + %)hwo, n=0,12,... (1.6.5b)
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n=123.. E k)
1 11 | E;

» &

Fig. 1.6.2. Dispersion relation, E(k) vs. k. for electric subbands arising from
electrostatic confinement in zero magnetic field. Different subbands are indexed by n.

where un(q) = eXP[—qZ/Z}Hn @

H,(q) being the nth Hermite polynomial. The first three of these poly-
nomials are

Hu@) =~ Hl(q)=£,,% and Hy(g)= 22!

\/‘ 1/4
The velocity is obtained from the slope of the dispersion curve:
1
v(n k) = - JE(:K) _ Bk (1.6.5¢)
ok m

The dispersion relation is sketched in Fig. 1.6.2. States with different
index n are said to belong to different subbands just like the subbands that
arise from the confinement in the z-direction (see Section 1.2). The
spacing between two subbands is equal to hw,. The tighter the
confinement, the larger w, is, and the further apart the subbands are.
Usually the confinement in the z-direction is very tight (~ 5-10 nm) so
that the corresponding subband spacing is large (~ 100 meV) and only
one or two subbands are customarily occupied. Indeed, in all our
discussions we will assume that only one z-subband is occupied. But the
y-confinement is relatively weak and the corresponding subband spacing
is often quite small so that a number of these are occupied under normal
operating conditions. The subbands are often referred to as transverse
modes in analogy with the modes of an electromagnetic waveguide.

Unconfined electrons (U = 0) in non-zero magnetic field (B = 0)

Next we consider unconfined electrons (U = 0) in a magnetic field. This
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is the case that we discussed qualitatively in the last section. In this case
Eq.(1.6.1) reduces to

2 (eBy + hk)’
E+2 (——z,—)]x(y) = Ex(y)
m

which can be rewritten in the form

Py2 1 2 2

Es+——+——mwc(y+yk) x) =Ex(y) (1.6.6)
2m 2
B
where Yim hk and wc ’_|_E_|__ (1.6.7)
eB m

Eq.(1.6.6) is basically a one-dimensional Schrédinger equation with a
parabolic potential just as we had before. The only difference is that the
parabola is centered at y = -y, instead of y = 0. Thus the eigenenergies
and eigenfunctions look very similar to the results for electric subbands
(see Egs.(1.6.5a,b,c)):

Xk () = un(q +q1) (1.6.8a)
E(nk)=E +(n+$hw., n=012,... (1.6.8b)
where g=+mw/hy and g = mw./hy

The mathematics describing Landau levels (or magnetic subbands) in-
dexed by = is thus very similar to the mathematics describing the electric
subbands for a parabolic confining potential. However, despite the formal
similarity the physical content is completely different. The difference is

E (k)
4 E

- W

>
k

Fig. 1.6.3. Dispersion relation, E(k) vs. k. for Landau levels (or magnetic subbands) in
an unconfined system in non-zero magnetic field. Different Landau levels are indexed
by n.
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easily appreciated if we look at the velocity associated with these states
which is obtained from the slope of the dispersion curve (sketched in Fig.
1.6.3):
1 dE(n,k)

v(n, k) = 7 & 0! (1.6.8¢c)
Although the eigenfunctions have the form of plane waves exp [ikx], these
waves have no group velocity because the energy E is independent of k. if
we were to construct a wavepacket out of these states localized in x it
would not move. This is in keeping with what we would expect from clas-
sical dynamics which predicts that an electron in a magnetic field will
describe closed circular orbits in the x—y plane that do not move in any
particular direction. The spatial extent of each wavefunction in the
y-direction is approximately

h _ ‘\’hwc/m - _V_
V mawc W W

This is equal to the radius of the classical orbit that an electron would de-
scribe if it had an energy of hw./2.

An important difference between the eigenfunctions corresponding to
electric subbands (Eq.(1.6.5a)) and those corresponding to magnetic sub-
bands (Eq.(1.6.8a)) is that in the latter case the wavefunctions shift along
the transverse coordinate y as we change the wavevector & in the longitu-
dinal direction. This is depicted in Fig. 1.6.4. One question that often
comes up is the following: how many electrons can fit into one Landau
level? In Section 1.5 we obtained the answer heuristically by arguing that
this number, N, must equal the two-dimensional density of states multi-
plied by the energy spacing between two Landau levels:

—
<

L

Fig. 1.6.4. Pictorial representation of the eigenfunctions (in a magnetic field)
corresponding to a fixed index » but different values of k.
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|e|BS
h

N=—”—'§5-xhwc=
h

We can obtain this result more rigorously by noting that the allowed
values of k are spaced by 2x/L, which means that the corresponding
wavefunctions are spaced by

hAk ~ 2mh

“lelB " JelBL

along the y-coordinate. Hence the total number of states is given by

Ayk

N = 2 (for spin) x - = LB
Ayk zth

in agreement with the heuristic result.

Confined electrons (U = 0) in non-zero magnetic field (B = 0)

Finally we consider the general case with a confining potential and a
non-zero magnetic field. The eigenstates then form magneto-electric sub-
bands which reduce to electric subbands when B = (0 and to magnetic
subbands when U = 0. We start from Eq.(1.6.3) with a parabolic potential

+p_,2+(eBy+hk)2 1,

E, + —mowdy?
om 2m o Moy

x0) = Ex()

and rewrite it in the form

wl

y yk] )x(y) - Ex()
,

2

2m 2 Weo

2 2,..2
1 wiw 1
Es+p—’+——m———°yf+——mw§o
2 c0

where 0w =m0l + o (1.6.9)

Once again, Eq.(1.6.9) is basically a one-dimensional Schrédinger equa-
tion with a parabolic potential and the eigenenergies and eigenfunctions
look very similar to the results for electric subbands (Egs.(1.6.5a,b,c)) and
for magnetic subbands (Eqs.(1.6.8a,b,c)):

wl
Xk (V) = tn [q+ = qk] (1.6.10a)
c0
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where q=+moo/hy and g =.mwc/hy

2,..2
E(nk)=E. + —;—m D0Be 32 +(n +)hwo
o

c0

232 2
Wk o (1.6.10b)
2m Weco

= E; +(n+4)how +

The velocity is given by

2
v(n k) = LK) _ B @i

1.6.10
h ok m wgo ( C)

The dispersion relation and the velocity are sketched in Fig. 1.6.5. It
would seem that the effect of the magnetic field is simply to increase the
mass by a factor that depends on the relative magnitudes of the
confinement parameter @, and the cyclotron frequency w.:

w?
m— m[1+ ——2—]

Wo

@ ,.123.. AE(k)
+ E¢
-k
®) A v(k)
yk
» K

Fig. 1.6.5. Magneto-electric subbands in a parabolic potential: (@) Dispersion relation,
E(k) vs. k. for different subbands indexed by n. (b) Velocity, v(k) vs. k and transverse
location yx vs. k for any subband ».
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For zero magnetic field, the cyclotron frequency is zero and we recover
the purely electric subbands discussed earlier. As the magnetic field is
increased, the cyclotron frequency gets larger and the mass increases
making the dispersion relations look nearly flat as expected from our dis-
cussion of magnetic subbands.

There is, however, a more profound change in the eigenstates due to
the magnetic field, which is not apparent from this description. To see
this, we have to look at the spatial location of the eigenstates as a func-
tion of k. We know that the wavefunction corresponding to a state (n,k) is
centered around y = —y; where

wf + w?
Vi = hk/eB =y = v(n,k)———
.y
as shown in Fig. 1.6.5b. The point is that the transverse location of the
wavefunction is proportional to its velocity. As the magnetic field is in-
creased, states carrying current along +x shift to one side of the sample
while states carrying current in the other direction shift to the other side of
the sample. This seems reasonable from a classical viewpoint since the
Lorentz force ev x B is opposite for electrons moving in opposite direc-
tions. Increasing the magnetic field thus causes a reduction in the spatial
overlap between the forward and backward propagating states, resulting in
a suppression of the backscattering due to imperfections. The effect can
be spectacular as we will see in Chapter 4.

1.7 Drift velocity or Fermi velocity?

The current density J in a homogeneous conductor is usually expressed as
the product of the electron density and the drift velocity va:

J =ensvy 1.7.1)

This conveys the impression that all the conduction electrons drift along
and contribute to the current. However, this picture is somewhat mislead-
ing for a degenerate gas at low temperatures (ksT << E¢ — E;). If we were
to measure the current carried by the electrons at different energies (such
energy-resolved measurements can be done) we would find that the net
current is non-zero only within a few kgT of the quasi-Fermi energy F.,.
This leads to a major conceptual simplification because it means that to
understand the conduction properties at low temperatures we do not need
to worry about the dynamics of the entire sea of electrons; it is sufficient
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ky
\ Drifted
—p distribution
kg

Fig. 1.7.1. At low temperatures all the states lying within a circle of radius k¢ are
occupied at equilibrium. In the presence of an electric field the circle is shifted in the
direction of eE.

A

Equilibrium
distribution

to understand the dynamics of electrons having energies close to the
Fermi energy. This is the central point we wish to convey in this section.,

It is easy to see why the current flows entirely within a few ksT of the
quasi-Fermi energy. Let us define a distribution function f(k) that tells us
the probability that a state k is occupied. At equilibrium f(k) =1 for all
the states lying inside a circle of radius k¢ (that is, for k < k¢). An electric
field makes the entire distribution shift by k, as shown in Fig. 1.7.1:

[f®),.., =[f(k~ko)],., (1.72)

hky eEtn - eEty (1.7.3)
m

where — =Vg = kg =
m

Now, the point is that, deep inside the Fermi sea (k << k;) nothing
much happens, assuming that the field is small enough that the shift k; is

E
Ft

P
F
Compensated Electrons that
electqons carry net current
E s
o

kx

Fig. 1.7.2. States that carry current along +x direction are filled up to a higher energy
(F*) than the states that carry current along —x direction (F 7). A net current flows
only in the range of energies lying between F~ and F*.
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small compared to k;. The states were full without the field and they are
still full when the field is applied. It is only near +k; that states that were
empty become filled due to the field; while, near —k; the states that used
to be full become empty. Thus although from a single-particle point of
view the electric field gives all the electrons a drift velocity, from a col-
lective point of view the electric field only moves a few electrons from
—k: to +k;. We could rewrite the current density in a slightly different form
to reflect this point of view:

J= e[ns Yi’-]vf (1.7.4)
143

From this point of view, the current is carried by a small fraction of the
total electrons (nsva/vy) which move with the Fermi velocity.

Quasi-Fermi level separation

An approximate way to visualize the shift in the distribution function f(k)
is to define a quasi-Fermi level F* for the electrons that move in the same
direction as the force ¢E and another quasi-Fermi level F~ for the elec-
trons that move in the opposite direction (see Fig. 1.7.2). All the states
(+k; and -k,) below F- are completely full and carry no current. But in
the energy range between F* and F~ the states with —k, are empty while
those with +k, are full and it is the electrons in these states that carry the
“current. We can estimate F* and F~ by noting that

. R (ke + ka)? and F~ B2 (ke - kd)z
2m 2m

F

where kg is given by Eq.(1.7.3). Assuming that k; >> k4, we can write

2hkeky
m

F*-F ~ = 2eEViTn = 2eELy 1.7.5)
This is a very reasonable result: the separation of quasi-Fermi levels is
proportional to the energy that an electron gains in the electric field in a
mean free path.

Einstein relation

One way to calculate the current is to write the current density as
J = ensvq and then relate the drift velocity to the electric field as we did
in Section 1.4. We will now describe a different way to calculate the
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contact ] @————————® contact2

contact 1 contact 2
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contact 1 contact 2

Fig. 1.7.3. (a) A conductor of length L is sandwiched between two contacts and an

external bias is applied between the contacts. (b), (c) Band diagram under bias. Two

ways to visualize the flow of current. Note that E; is the bottom of the band while F, is
the quasi-Fermi level.

current that highlights the fact that the current at low temperatures is
carried by a few electrons near the Fermi energy. For simplicity we will
assume ‘zero’ temperature.

Consider a rectangular piece of conductor, of length L and width W,
stretched between two large conducting pads (which we will refer to as
the contacts) as shown in Fig. 1.7.3a. A bias V is applied across the con-
tacts creating an electric field E =xV/L in the conductor. Fig. 1.7.3b
shows the band diagram under bias. The bottom of the subband E; (which
follows the electrostatic potential energy) acquires a constant slope pro-
portional to the electric field:

E =VE/|e|
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In a homogeneous conductor the electron density is constant everywhere.
Since the electron density is a function of (F, — E;) this means that the
quasi-Fermi level F, and the band-edge E; run parallel to each other in a
homogeneous conductor as shown. Note that we are using F, to denote the
average quasi-Fermi level of all the electrons in the states with +k as
well as —k; that is, F, = (F* + F")/2. Usually for low fields the difference
(see Eq.(1.7.5)) between F* and F~ is quite small anyway.

At zero temperature, the electrons in the states below w. do not con-
tribute to the current flow and can be ignored. Let us focus our attention
in the energy range between y; and y. In this energy range, we have an
electron density of (N = m/xh? is the 2-D density of states)

Ny (1 - u2)

in contact 1 and no electrons in contact 2, so that there is a concentration
gradient from contact 1 to contact 2. This sets up a diffusion current which
can be calculated from the diffusion equation:

J=-eDVn=eDN 2 3 . 2DNE
|elL
Comparing with the relation J = oE, we obtain an expression for the con-
ductivity:
o=€N,D (1.7.6)

This is the Einstein relation for degenerate conductors.

Drift or diffusion?
Note that in this example there is no concentration gradient (and hence
no diffusion current) if we consider the entire sea of electrons, since the
total electron density is constant everywhere. The current is then purely
due to drift (J = ensvq) as shown in Fig. 1.7.3b. This point of view yields
an expression for the conductivity in terms of the mobility (see
Eq.(1.4.2))

o =|elnp 1.7.7)

But if we focus our attention on the energy range y; > E > u, then there
is a concentration gradient and the current is purely due to diffusion as
shown in Fig. 1.7.3c. This point of view yields Eq.(1.7.6) for the conductiv-
ity in terms of the diffusion coefficient. To ensure consistency between
the two points of view the diffusion coefficient and the mobility must be
related as follows:
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D
e _m g B = p-ly (1.7.8)
u N 2

It is important to note that Egs.(1.7.6) and (1.7.7) express two very differ-
ent perspectives on conductivity. If we double the electron concentration
in a conductor, its conductivity will double. Eq.(1.7.7) ‘explains’ this in-
crease in conductivity in terms of the increase in the electron density 7,;
the mobility remains unchanged. But Eq.(1.7.6) ‘explains’ it in terms of an
increase in the diffusion coefficient (since the Fermi velocity v is
larger); the density of states N, remains unchanged. From one point of
view there are more electrons that move. From another point of view the
same number of electrons move faster.

This curious difference in viewpoints does not arise for non-degenerate
conductors. The Einstein relation in this case is obtained from Eq.(1.7.8)
by replacing (E¢ - E,) with kgT (this correspondence between degenerate
and non-degenerate systems seems to hold quite generally)

|e|D

= kgT

so that the diffusion coefficient is proportional to the mobility and not to
the conductivity as in degenerate conductors (see Eq.(1.7.6)).

Zero temperature conductance is a Fermi surface property

The point of view depicted in Fig. 1.7.3c clearly shows that the current is
carried by a few electrons near the Fermi energy that diffuse from 1 to 2.
At zero temperature, electronic transport occurs in the energy range
1 > E > yp. At non-zero temperatures, the Fermi function (see Fig. 1.2.2)
does not go from one to zero abruptly. Instead it changes over an energy
range of the order of a few kg7. Consequently transport occurs over an en-
ergy range

t + a few kgT > E > u, — a few kgT

For linear response we conceptually let the bias tend to zero; that is,
w1 ~ uz ~ Eq. Transport then occurs over a few kgT around the Fermi
energy. If we let the temperature tend to zero then transport occurs right
at the Fermi energy. This means that to understand the conduction
properties at low temperatures it is sufficient to consider the diffusion of
electrons right at the Fermi energy. We do not need to worry about the
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dynamics of the entire sea of electrons. This is true even in the presence
of magnetic fields, but with one small caveat, which we will now discuss.

Is conductance a Fermi surface property when a
magnetic field is present?

To appreciate the problem, we recall that in a magnetic field states carry-
ing current in opposite directions are spatially separated as discussed in
Section 1.6 (see Fig. 1.6.5). The states carrying current from left to right
are localized along one edge while the states carrying current from right
to left are localized along the other edge. Consequently even at equilib-
rium, the local current density in a conductor is not zero (see Fig. 1.7.4).
There is no net current across any cross-section AA', but there are local
currents flowing at different points along the cross-section.

A + k states y
= t.
—r—l
]
A\
< = g
f
\Vj
A ~k states

Fig. 1.7.4. Local circulating currents in a conductor at equilibrium do not contribute to
the net current flow across any plane AA' in the conductor. An applied bias could
change the circulating current pattern thus contributing to the conductivity.

Consider the conductivity tensor defined by the relation

8] = 0 8E (1.7.9)

where 8] is the change in the local current density in response to an elec-
tric field 8E. An applied bias gives rise to an electric field inside the
sample which changes the eigenstates of the sample and hence the local
current density within the sample. According to Eq.(1.7.9) this change in
the circulating current pattern in response to an applied electric field cor-
responds to a non-zero conductivity. All the electrons (even those in filled
bands far below the conduction band) can contribute to the circulating
current patterns and hence to the conductivity. We could miss these con-
tributions if we only take the electrons at the Fermi energy into account.
But what we miss has no effect on the conductance as measured in a
transport experiment because the circulating currents do not contribute to
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any net flow across any cross-section. For a more formal discussion of this
point see H. U. Baranger and A. D. Stone (1989), Phys. Rev. B, 40, 8169.

The statement that ‘zero temperature conductance is a Fermi surface
property’ thus needs to be qualified when a magnetic field is present. It is
true if we are talking about the conductance as measured between two
contacts. But it is not true if we are talking about the conductivity as
defined by Eq.(1.7.9).

Summary

This chapter summarizes a few basic concepts. A great majority of meso-
scopic conductors are patterned out of the two-dimensional electron gas
(2-DEG) formed at a GaAs—AlGaAs interface. What makes this 2-DEG
special is the long mean free path (~ tens of microns) that have been
demonstrated at temperatures below 10 K (Section 1.1). Most mesoscopic
experiments involve conduction by electrons in the conduction band
(rather than holes in the valence band) with energies low enough that an
effective mass description is sufficiently accurate. Also most experiments
are carried out at low temperatures where the Fermi function is strongly
degenerate (Section 1.2). Mesoscopic behavior is usually observed when
the sample size is smaller than one or more of several length scales: the
de Broglie wavelength, mean free path, phase-relaxation length and
screening length (Section 1.3). The variation of resistance with magnetic
field at low fields is understood readily in terms of a classical model
(Section 1.4) but to understand the variation at high fields we need to
invoke the wave nature of electrons (Section 1.5). Electronic states in
narrow conductors evolve from purely electric subbands (arising from
electrostatic confinement) to purely magnetic subbands or Landau levels
as the magnetic field is increased. These subbands are often referred to as
transverse modes by analogy with the transverse modes (TE;o, TM1; etc.)
of electromagnetic waveguides (Section 1.6). The conductance of degen-
erate conductors is determined by the dynamics of the electrons having
energies close to the Fermi energy. It is not necessary to worry about the
entire underlying sea of electrons (Section 1.7).
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Exercises

E.1.1 Consider the sample used to obtain the data shown in Fig. 1.3.2.
Calculate the mean free path L, and the phase-relaxation length L, (at
T=1K).

E.1.2 (a) Use the low-field data (0 < B < 0.5 T) in Fig. 1.4.2 to calculate
the electron density and mobility from Egs.(1.4.4a,b).

(b) Use the high-field data (1 T<B <4 T) in Fig. 1.4.2 to construct a
‘Landau plot’ of the peak number i versus 1/B and deduce the electron
density.

E.1.3 Consider a narrow conductor etched out of a wide conductor, as
shown in Fig. E.1.3.

___JEW\__
ETJ V.

Fig. E.1.3. Narrow conductor etched out of a wide conductor. In the wide regions the
transverse modes are essentially continuous, but in the narrow region the modes are
well-separated in energy.

The wide conductor can be treated simply as a two-dimensional conduc-
tor so that it is easy to calculate the location of the Fermi energy E; rela-
tive to the bottom of the band E, using the 2-D density of states (see
Eq.(1.2.10)). Assuming m = 0.07mq

mih® ~2.9x10"%cm? meV

If the electron density in the wide conductor is 5 x 10'!/cm? then

ns

EsmE(2D)-E = =172 meV
min

hZ
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In the narrow region we cannot use the 2-D density of states if the width
W is small enough; it is necessary to take into account the discreteness of
the transverse modes. Plot the electron density versus Fermi energy for
W = 1000 A, assuming two different models for the confining potential:

U®y)=0,-W/2 w2
(a) Hard wall potential: 0) ! <‘y <W
= oo, otherwise

(b) Parabolic potential: U(y) = %mwé”y”

with @, chosen such that

Uly=xW2)=E;; = hwo~3.9meV

Note that these are rather simplified models. For an accurate description
of the confining potential it is necessary to solve the Schrodinger and
Poisson equations numerically as described in, for example, S. E. Laux,
D. J. Frank and F. Stern (1988), Surface Science, 196, 101 and J. H.
Davies and J. A. Nixon (1989), Phys. Rev. B, 39, 3423,

E.1.4 Consider the structure in E.1.3 and assume a parabolic confining
potential. Calculate the number of transverse modes as a function of the
magnetic field, assuming (a) constant Fermi energy and (b) constant
electron density.

Note that if the Fermi energy remains constant then the conductor can
be completely depleted as the magnetic field is increased (see for exam-
ple, B. J. van Wees et al. (1988), Phys. Rev. B, 38, 3625). But if the elec-
tron density is assumed to remain constant then the number of modes
cannot decrease to zero; at least one mode always remains occupied (see
for example, K. F. Berggren, G. Roos and H. van Houten (1988), Phys.
Rev. B, 37, 10118).

Further reading

[1.1] Beenakker, C. W. J. and van Houten H. (1991). ‘Quantum transport
in semiconductor nanostructures’ in Solid State Physics, 44, eds. H.
Ehrenreich and D. Turnbull, (New York, Academic Press) (see Part I).
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For a review of modulation-doped heterostructures see

[1.2] Drummond, T. J., Masselink, W. T. and Morkoc, H. (1986).
‘Modulation-doped GaAs/(Al,Ga)As heterojunction field-effect transistors:
MODFET’s’, Proc. IEEE, 74, 773.

[1.3] Melloch, M. R. (1993). ‘Molecular beam epitaxy for high electron
mobility modulation-doped two-dimensional electron gases’, Thin Solid
Films, 231, 74.

Both [1.2] and [1.3] provide extensive bibliographies.

For a review of the work on 2-D semiconductors prior to 1981, see

[1.4] Ando, T., Fowler, A. B. and Stern, F. (1982). ‘Electronic properties
of two-dimensional systems’, Rev. Mod. Phys., 54, 437.
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Conductance from transmission

2.1 Resistance of a ballistic conductor

2.2 Landauer formula

2.3 Where is the resistance?

2.4 What does a voltage probe measure?

2.5 Non-zero temperature and bias

2.6 Exclusion principle?

2.7 When can we use the Landauer—Biittiker formalism?

Our purpose in this chapter is to describe an approach (often referred to as
the Landauer approach) that has proved to be very useful in describing
mesoscopic transport. In this approach, the current through a conductor is
expressed in terms of the probability that an electron can transmit through
it. The earliest application of current formulas of this type was in the cal-
culation of the current—voltage characteristics of tunneling junctions
where the transmission probability is usually much less than unity (see J.
Frenkel (1930), Phys. Rev., 36, 1604 or W. Ehrenberg and H. Honl (1931),
Z. Phys., 68, 289). Landauer [2.1] related the linear response conductance
to the transmission probability and drew attention to the subtle questions
that arise when we apply this relation to conductors having transmission
probabilities close to unity. For example, if we impress a voltage across
two contacts to a ballistic conductor (that is, one having a transmission
probability of unity) the current is finite indicating that the resistance is
not zero. But can a ballistic conductor have any resistance? If not, where
does this resistance come from? These questions were clarified by Imry
[2.2], enlarging upon earlier notions due to Engquist and Anderson [2.3].
Biittiker extended the approach to describe multi-terminal measurements
in magnetic fields and this formulation (generally referred to as the

48
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Landauer-Biittiker formalism) has been widely used in the interpretation
of mesoscopic experiments. We will present these concepts in Sections
2.1-2.4, though not always in the historical order in which they were
developed. For more details we refer the reader to Refs. [2.1]-[2.4] and
references therein.

To simplify the discussion in Sections 2.1-2.4, we assume ‘zero tem-
perature’ so that there is current flow only in the energy range
1 > E > u;. We further assume that the transmission characteristics are
independent of energy in this range of energies so that the entire energy
range can be viewed as a single energy channel. However, in general,
current flow takes place over a large range of energies and the transmis-
sion characteristics could vary widely over this range. In Section 2.5 we
generalize the discussion to include multiple energy channels and derive
a current—voltage relation that can be used for high temperature and large
applied bias. As we mentioned earlier, this current—voltage relation has
been used ever since the 1930s to describe tunneling junctions (for a re-
view see C. B. Duke (1969), ‘Tunneling in solids’, in Solid State Physics,
eds. H. Ehrenreich and D. Turnbull, (New York, Academic Press)). More
recently it has been used to calculate the I-V characteristics of resonant
tunneling devices following the pioneering work of R. Tsu and L. Esaki
(see Appl. Phys. Lett., 22, 562 (1973)).

The approach described in this chapter is intuitively very appealing be-
cause it seems obvious that the conductance of a sample ought to be pro-
portional to the ease with which electrons can transmit through it. But is
it accurate to describe the current flow in degenerate conductors at low
temperatures in terms of a single-particle transmission coefficient?
Doesn’t the exclusion principle affect the transmission? This is the ques-
tion we address in Sections 2.6 and 2.7. We show that if transport through
the conductor is coherent then the exclusion principle has no effect on the
transmission. If transport is not coherent then, in general, the exclusion
principle can affect the transmission in a complicated way. This would
seem to limit the usefulness of the Landauer—Biittiker formalism to co-
herent transport. However, even for non-coherent transport, the exclusion
principle-related factors disappear if we neglect the vertical flow of elec-
trons from one energy to another. Luckily it turns out that the vertical flow
often has little effect on the total current through a conductor.

We end with a brief summary in Section 2.8.
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Fig. 2.1.1. (a) A conductor is sandwiched between two contacts across which an

external bias is applied. The contacts are assumed to be ‘reflectionless’, that is,

electrons can exit from the conductor into the contact with negligible probability of

reflection. (b) Dispersion relations for the different transverse modes (or subbands) in

the narrow conductor. For reflectionless contacts, the quasi-Fermi level for the +k
states is y1 while that for the —k states is up.

2.1 Resistance of a ballistic conductor

Consider a piece of conductor stretched between two large contact pads
as shown in Fig. 2.1.1a. If the dimensions of the conductor were large then
we know that its conductance would be given by G = oW/L, where the
conductivity o is a material parameter independent of the sample dimen-
sions. If this ohmic scaling relation were to hold as the length (L) is
reduced, then we would expect the conductance to grow indefinitely.
Experimentally, however, it is found that the measured conductance
approaches a limiting value G, when the length of the conductor
becomes much shorter than the mean free path (L << Lx). Note that this
has nothing to do with quantum mechanics. Indeed in our discussion we
will assume that the phase-relaxation length is short enough that
interference-related effects can be neglected.

Where does this resistance come from? After all, a ballistic conductor
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(that is, a conductor with no scattering) should have zero resistance. This
resistance arises from the interface between the conductor and the con-
tact pads which are very dissimilar materials [2.2]. For this reason we will
refer to this resistance ( Gc') as the contact resistance. The current is car-
ried in the contacts by infinitely many transverse modes (this concept
was introduced in Section 1.6), but inside the conductor by only a few
modes. This requires a redistribution of the current among the current-
carrying modes at the interface leading to the interface resistance. Could
we get rid of this contact resistance simply by making the contacts
identical to the conductors? Yes, but then the measurement we are
talking about would not make sense. The contacts have to be ‘infinitely’
more conducting than the conductor in order to justify our assumption that
the applied voltage drops entirely across the conductor.

‘Reflectionless contacts’

To calculate the contact resistance Gc' we consider a ballistic conductor
and calculate the current through it for a given applied bias u; — u». It is
straightforward to calculate this current if we assume that the contacts are
‘reflectionless’, that is, the electrons can enter them from the conductor
without suffering reflections. Numerical calculations indicate that as long
as the energy is not too close to the bottom of the band, an electron can
exit from a narrow conductor into a wide contact with negligible probabil-
ity of reflection (see A. Szafer and A. D. Stone (1989), Phys. Rev. Lett.,
62, 300). This is what we mean by a ‘reflectionless’ contact. We use the
quotes as a reminder that the reflection is negligible only when transmit-
ting from the narrow conductor to the wide contact. Going the other way
from the contact to the conductor, the reflections can be quite large.

For ‘reflectionless’ contacts, we have a simple situation: +k states in
the conductor are occupied only by electrons originating in the left con-
tact while —k states are occupied only by electrons originating in the right
contact. This is because electrons originating in the right contact populate
the —k states and empty without reflection into the left contact while
electrons originating in the left contact populate the +k states and empty
without reflection into the right contact (note that k denotes the
wavenumber in the x-direction).

We will now argue that the quasi-Fermi level F* for the +k states is
always equal to u; even when a bias is applied (Fig. 2.1.1b). Suppose
both contacts are at the same potential y,;. There is no question then that
the Fermi level for the +k states (or any other state) is equal to the



52 Conductance from transmission

potential w;. Now if we change the potential at the right contact to u,
this can have no effect on the quasi-Fermi level F* for the +k states
since there is no causal relationship between the right contact and the +k
states. No electron originating in the right contact ever makes its way to
a +k state. Similarly we can argue that the quasi-Fermi level F- for the
-k states in lead 2 is always equal to u,. Hence at low temperatures the
current is equal to that carried by all the +k states lying between u; and

Ha.

Calculating the current

To calculate the current we note that the states in the narrow conductor
belong to different transverse modes or subbands as discussed in Section
1.6. Each mode has a dispersion relation E(N,k) as sketched in Fig. 2.1.1b
with a cut-off energy

EN = E(N,k = 0)

below which it cannot propagate. The number of transverse modes at an
energy E is obtained by counting the number of modes having cut-off
energies smaller than E:

M(E)= 2 HE - &) (2.1.1)

We can evaluate the current carried by each transverse mode (numbered
by ‘N’ in Fig. 2.1.1b) separately and add them up.

Consider a single transverse mode whose +k states are occupied
according to some function f*(E). A uniform electron gas with n electrons
per unit length moving with a velocity v carries a current equal to env.
Since the electron density associated with a single k-state in a conductor
of length L is (1/L) we can write the current I* carried by the +k states as

. € N exldE .,
P=p 2 ®=7355 @

Assuming periodic boundary conditions (see Fig. 1.2.1 and related discus-
sion) and converting the sum over k into an integral according to the
usual prescription

E - 2(forspin)x—2%fdk

k
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where ¢ is the cut-off energy of the waveguide mode. We could extend
this result to multi-moded waveguides and write the current, I*, carried by
the +k states in a conductor as

+ ze+°° +
== { FHEYM(E)AE (2.1.2)

where the function M(E) (defined in Eq.(2.1.1)) tells us the number of
modes that are above cut-off at energy E. Note that this is a general result
independent of the actual dispersion relation E(k) of the waveguide: the
current carried per mode per unit energy by an occupied state is equal to
2|e|/h (which is about 80 nA/meV).

Contact resistance

Assuming that the number of modes M is constant over the energy range
1 > E > pp, we can write

2 _ 2
-2 pyla-w) oo 2y (2.13)
h e h

so that the contact resistance (which is the resistance of a ballistic
waveguide) is given by

Glm (i —pm)e _h . 12.9kQ
¢ I 26°M M

Note that the contact resistance goes down inversely with the number of
modes. The contact resistance of a single-moded conductor is ~12.9 k<,
which is certainly not negligible! This is the resistance one would mea-
sure if a single-moded ballistic conductor were sandwiched between two
conductive contacts.

Usually we are concerned with wide conductors having thousands of
modes so that the contact resistance is very small and tends to go un-
noticed. To calculate the number of modes M(E) we need to know the
cut-off energies for the different modes ey. As we have seen in Section
1.6, the details depend on the confining potential U(y) and the magnetic
field. However, for wide conductors in zero magnetic field the precise
nature of the confining potential is not important. We can estimate the
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number of modes simply by assuming periodic boundary conditions. The
allowed values of k, are then spaced by 2a/W (see Fig. 1.2.1), with each
value of k, corresponding to a distinct transverse mode. At an energy E;
(=#*k#/2m), a mode can propagate only if —k; < k, < kr. Hence the
number of propagating modes can be written as

M= Int[kfw] = Int —K}
1

Ae/2

where Int(x) represents the integer that is just smaller than x. Assuming a
Fermi wavelength of 30 nm, the number of modes in a 15 um wide field-
effect transistor is approximately 1000, so that the contact resistance is
about 12.5 Q.

Experimental results

The contact resistance can be measured directly using point contacts to
create a constriction (much shorter than a mean free path) in a conductor.
This was done in the late 1960s in metals (see Yu. V. Sharvin and N. L
Bogatina (1969), Sov. Phys. JETP, 29, 419). In metals the Fermi wave-
length is extremely short, of the order of the distance between atoms.
Consequently the number of modes M (~ kW/x) is quite large and the
contact resistance is relatively small. In semiconductors on the other
hand, the Fermi wavelength is typically ~ 30 nm so that the factor kW
can easily be made quite small.

The first experiment on semiconductors was reported independently by
two groups in 1988 (see Fig. 2.1.2). As the width W of the constriction
was reduced the conductance went down in discrete steps each of height
(2€%/h). This is just what we would expect from Eq.(2.1.3) since M is an
integer denoting the number of subbands or transverse modes in the con-
striction at the Fermi energy. Although the width of a conductor changes
continuously the number of modes changes in discrete steps. This
discreteness is not evident if the conductor is many thousands of wave-
lengths wide, since a very small fractional change in W changes M by
many integers.

The results shown in Fig. 2.1.2 not only provide a striking demonstration
of the existence of a contact or interface resistance but also serve to
emphasize the reality of transverse modes when dealing with narrow
conductors. A narrow conductor can be viewed as an ‘electron waveguide’
analogous to electromagnetic waveguides. The current is carried by a
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Fig. 2.1.2. Quantized conductance of a ballistic waveguide. (a) A negative voltage on
a pair of metallic gates (called the split-gate configuration) is used to deplete and
narrow down the constriction progressively. (b) Measured conductance vs. gate
voltage. The measured resistance also includes a series resistance due to the wide
regions connecting the constriction to the contacts. This series resistance is measured
separately by removing the negative voltage on the gates and is subtracted off before
plotting. Reproduced with permission from B. J. van Wees et al. (1988), Phys. Rev.
Lert., 60, 848. Similar results were reported simultaneously by D. Wharam et al.
(1988), J. Phys. C,21, 1209,

discrete number of transverse modes (like the TE;o and the TE;; modes of
electromagnetic waveguides) and the contact resistance is inversely
proportional to this number, M.

Where is the voltage drop?

We can easily see that the resistance Gc' is associated with the inter-
faces and not with the conductor itself by sketching the variation of the
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Fig. 2.1.3. (a) A ballistic conductor connected to two wide contacts. (b) Inside the

wide contacts there is a very high density of transverse modes (indicated by shading)

and both +k and —k states have nearly the same quasi-Fermi level. In the narrow

ballistic conductor there are only a few modes and the +k and —k states have different

quasi-Fermi levels. (¢) Variation of the electrochemical potential from one contact to
the other. Note that k stands for ;.

electrochemical potential from one contact to the other (see Fig. 2.1.3).
Inside the wide contacts there is a very high density of transverse modes
(indicated by shading), so that both +k and —k states have nearly the
same quasi-Fermi level even when there is a current flowing. But inside
the narrow ballistic conductor there are only a few modes and the quasi-
Fermi levels for the +k and the -k states are noticeably different. Indeed
as we have discussed, the quasi-Fermi level for the +k states follows p
while that for the -k states follows u,. Now if we sketch the average
quasi-Fermi level we find that it drops equally at the two interfaces but is
flat across the conductor as shown in Fig. 2.1.1c. Since a voltage drop is
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associated with resistance we conclude that there are two equal resis-
tances at the two interfaces but none inside the conductor.

It might seem somewhat arbitrary to look at the average quasi-Fermi
level for the +k and the -k states and call it the ‘voltage’. We could for
example look at the quasi-Fermi level for just the +k states. We then find
that the voltage drops entirely at the right interface but there is still no
voltage drop across the conductor. No matter how we choose to define the
‘voltage’ there is no drop across the conductor. All the drop is at the inter-
faces. How it is divided between the two interfaces, however, depends on
our definition of ‘voltage’. Another possibility is to associate the voltage
drop with the electrostatic potential. As we will see in Section 2.4, the
electrostatic potential generally follows the average quasi-Fermi level.
The only difference is that it cannot change abruptly at the interfaces.
Instead the change is smeared out over a screening length.

It is important to note that the contact resistance arises because on one
side the current is carried by infinitely many modes, while on the other
side it is carried by a few modes. The details of the geometry are not im-
portant as long as the contacts are ‘reflectionless’ as explained earlier.
However, the contact resistance can be smaller than (h/2e*M) if the
number of modes in the contact is finite (see Exercise E.2.1 at the end of
this chapter).

2.2 Landauer formula

To summarize our discussions in Section 2.1, the conductance of large
samples obeys an ohmic scaling law: G = oW/L. But as we go to smaller
dimensions there are two corrections to this law. Firstly there is an
interface resistance independent of the length L of the sample. Secondly
the conductance does not decrease linearly with the width W. Instead it
depends on the number of transverse modes in the conductor and goes
down in discrete steps. The Landauer formula (which we will now derive)
incorporates both of these features:

2
G =25 MT
h

The factor T represents the average probability that an electron injected
at one end of the conductor will transmit to the other end. If the transmis-
sion probability is unity, we recover the correct expression for the resis-
tance of a ballistic conductor including the contact resistance (see

Eq.(2.1.3)).
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Fig. 2.2.1. A conductor having a transmission probability of T is connected to two

large contacts through two leads. ‘Zero’ temperature is assumed such that the energy

distributions of the incident electrons in the two leads can be assumed to be step
functions. Note that k stands for &;.

Consider a conductor connected to two large contacts by two leads as
shown in Fig. 2.2.1. The leads are assumed to be ballistic conductors,
each having M transverse modes. T is the average probability that an
electron injected in lead 1 will transmit to lead 2. We assume that elec-
trons can exit from the conductor into the contacts without any reflection
(that is, the contacts are ‘reflectionless’, as explained in the last section).
Then the +k, states in lead 1 are occupied only by electrons coming in
from the left contact and hence these states must have an electrochemi-
cal potential of u;. Similarly we can argue that the -k, states in lead 2
are occupied only by electrons coming in from the right contact and
hence must have an electrochemical potential of p,.

Assuming zero temperature, current flow takes place entirely in the
energy range between u; and u,. The influx of electrons from lead 1 is
given by (see Eq.(2.1.3))

I = Qe/)M[p - p2]

The outflux from lead 2 is simply the influx at lead 1 times the transmis-
sion probability T:

B = QelyMI{pn - 2]
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The rest of the flux is reflected back to contact 1:
I = el))M(L-T)[ 1 - 2]

The net current I flowing at any point in the device (and in the external
circuit) is given by

I=L - =13 = Qe/)MT{ 1 - 2 )
Hence the conductance is equal to

2
I 2e MT

Tm-mw)e] ko (22.1)

as stated earlier. We could view the Landauer formula as a mesoscopic
version of the Einstein relation (see Eq.(1.7.6))

2
o=e?N.D < G=2—;—MT

with the conductivity replaced by the conductance, the density of states
replaced by the number of transverse modes (or subbands) and the diffu-
sion constant replaced by the transmission probability:

oco—-G N,—-M D-T

Should we include the contacts?

As we have discussed in Section 2.1, the conductance given by Eq.(2.2.1)
includes the contact resistance; that is, it gives the total conductance as
measured between two planes deep inside the contacts (marked ‘1’ and
‘2’ in Fig. 2.2.2) rather than between two planes in the leads (marked ‘1L’
and ‘2L°). A common question that arises is whether we ought to calcu-
late the transmission probabilities between ‘1’ and ‘2’ instead of between
‘1L’ and ‘2L’°. The answer is that we could do that but it is not necessary
to do so as long as the contacts are ‘reflectionless’, that is, electrons can
exit from the leads into the contacts with negligible probability of
reflection. Before we explain the reason for this, let us point out an inter-
esting implication of this observation in calculating the conductance of a
ballistic conductor.

For a ballistic conductor, it is quite trivial to write down the transmis-
sion probability between points 1L and 2L in the leads (Fig. 2.2.2): T=1
(for all modes m). Hence from Eq.(2.2.1), the conductance is equal to
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Fig. 2.2.2. In the wide contacts the current carried per mode is small so that +k and —k

states have about the same quasi-Fermi level. If the contacts are 'reflectionless' then

the +k states in lead 1 are in equilibrium with contact 1 and have a quasi-Fermi level
1 while the —k states in lead 2 (not shown) are in equilibrium with contact 2.

(2¢*/h)M, M being the number of modes in the narrow constriction. But
suppose we decide to calculate the transmission between planes ‘1’ and
2’ inside the contacts. The number of modes in the wide contacts, Mw, is
much larger but the average transmission probability per mode is much
smaller: T ~ M/Mw such that the conductance will still come out the
same, namely, (2e°/h)M. But this result is not at all obvious. To calculate
the transmission probability between planes 1 and 2 in the contacts is a
formidable task and it is not apparent what the answer should be. For this
reason the quantized conductance of a ballistic conductor was not widely
anticipated before its experimental discovery in 1988. It is really quite
surprising that although the relation G = (2¢*/h)MT gives us the
conductance measured between planes ‘1’ and ‘2’ (see Fig. 2.2.2), we do
not need to evaluate the quantity ‘M7’ between ‘1’ and ‘2’. We can save
ourselves a lot of work by evaluating it between ‘1L’ and ‘2L’ and still
obtain the same answer! Let us explain why.

It is usually argued that a lead with only a few modes cannot be as-
sumed to be in local equilibrium with a known electrochemical potential
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u. In any conductor the potentials F* and F~ for the incoming and out-
going electrons have to be slightly different in order for a net current to
flow:

2 (e
I1=="M(F'-F)

A contact has a very large number of modes M that ideally approaches
infinity. Consequently the current per mode is infinitesimal and one can
assume F* = F~. But a lead has only a few modes and one cannot neglect
the difference between F* and F~. Indeed the energy distribution in the
lead may not even be described by a Fermi function. For this reason it
has been argued that in applying the Landauer formula one ought to cal-
culate the transmission probability between two planes ‘1’ and ‘2’ located
deep inside the contacts (Fig. 2.2.2) where the electron energy distribu-
tion is known for sure.

If we look back at our derivation of the Landauer formula it will be
apparent that what we need is the energy distribution of the incoming
electrons at the lead; the energy distribution of the outgoing electrons is
irrelevant. We will now argue that, with ‘reflectionless’ contacts, the
incoming states in each lead are in thermal equilibrium with the
corresponding contact so that we can calculate the transmission between
two planes ‘1L’ and ‘2L’ located in the leads (Fig. 2.2.2) and apply the
Landauer formula without any ambiguity.

As we mentioned in Section 2.1, numerical calculations indicate that
as long as the energy is not too close to the bottom of the band, an elec-
tron can exit from a narrow lead into a wide contact with negligible prob-
ability of reflection. Since the contacts are ‘reflectionless’, an electron
originating in the right contact never makes its way to a +k state in lead
1. This is because electrons originating in the right contact, that transmit
through the conductor, populate the -k states in lead 1 and empty without
reflection into the left contact. Since the +k states in the conductor are
populated only by electrons originating from the left contact, these states
remain in equilibrium with the left contact even when a bias is applied.
Consequently the quasi-Fermi level F* for the +k states in lead 1 is
always equal to y; (Fig. 2.2.2). Similarly an electron originating in the left
contact never makes its way to a —k state in lead 2, so that the quasi-
Fermi level F~ for the —k states in lead 2 is always equal to ..

Note that we cannot use this argument for the outgoing states in the
leads, that is, the —k states in lead 1 or the +k states in lead 2. These
states are populated partially by electrons originating in contact 1 and
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partially by electrons originating in contact 2. Consequently the energy
distribution of the electrons in the outgoing states is not known a priori.
But we do not need the energy distribution in these states in deriving the
Landauer formula. Only the energy distribution of the incoming stream is
needed. If the contacts are not ‘reflectionless’ then we would have some
ambiguity regarding the incoming stream too, since the electrons in the
outgoing stream would get reflected into the incoming stream. But as we
have mentioned above, reflections are usually quite negligible for all
electrons except for those near the bottom of the band and under these
conditions the incoming stream in each lead remains in thermal equilib-
rium with the corresponding contact. This allows us to neglect the details
of the lead—contact interface and simply calculate the transmission prob-
ability from one lead to another.

Ohm’s law

The Landauer formula incorporates the correct properties of the resistance
of small conductors, namely (1) the length-independent interface resis-
tance associated with the contacts and (2) the discrete steps related to
the transverse modes in narrow conductors. We would now like to show
that for large conductors we recover the familiar Ohm’s law.

For a wide conductor with many modes the number of modes is propor-
tional to the width: M ~ k:W/x, so that Eq.(2.2.1) can be written as

G= eZVV]VS(va/ﬂ)

Next we make use of the following result which we will derive shortly
treating the electrons as purely classical particles neglecting any quan-
tum interference: the transmission probability through a conductor of
length L is given by
Lo
L+Ly 222

where L, is a characteristic length of the order of a mean free path.

G= L+ Lo e Ns(VfLo/Jt)

Identifying the diffusion coefficient as v:L¢/x and making use of the
Einstein relation o = e’N;D we obtain
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oW a4 L+L
= 7 = e—
L+ oW

We could write this as a series combination of an ‘actual’ resistance
obeying Ohm’s law and a ‘contact’ or ‘interface’ resistance
(G =Gs' +G):

Gs_l =_.L_.. and Gel -A(.)__
oW oW

This completes the proof. We will now derive the expression for the
transmission stated above (see Eq.(2.2.2)).

To prove that T(L) = Lo/(L + Lo)

Consider two conductors with transmission probabilities T} and T, con-
nected in series as shown in Fig. 2.2.3a. The problem is to find the proba-
bility of transmission Ty, through the series combination. It might scem
that the answer is simply

Ti; =TT (WRONG)

If this were true then the transmission probability through a chain of scat-
terers would go down exponentially with the length of the chain:
T(L) = exp[L/Lo] and we would not get Ohm’s law. The point is that the
term T,T; only gives us the probability for direct transmission without
any multiple reflections (see Fig. 2.2.3b). To obtain the total probability

@
— —
— 1 -7
R, @ R, @
® T T,
» 11,
R,
R, LT,RR,
>

Fig. 2.2.3 (a) Two resistors connected in series having transmission probabilities T

and T and reflection probabilities Ry and R,. (b) If we neglect all phase information

then the net transmission through two scatterers can be calculated by summing the

probabilities of transmitting without any reflection, with two reflections, with four
reflections etc.
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of transmission T;, we need to add the probabilities of all the multiply
reflected paths as well. We will treat the electrons as classical particles
and not worry about the phase relationships among the different paths.
This is appropriate if the phase-relaxation length is much shorter than the
distance between the scatterers.

The transmission probability T, is obtained by summing the probabili-
ties for transmission with zero reflections,with two reflections, with four
reflections and so on (see Fig. 2.2.3b):

T2 = LT + TGRR; + TLRIR? +...

i (2.2.3)
1-RR;

We can rewrite this result in the form (noting that T) =1 - R; and
T2 =1- Rz)
1-Ti; 1-5 + 1-T,
D 5L L

This simple calculation shows that when we place two scatterers in
cascade the quantity [(1-T)/T] has an additive property. This means that
the transmission probability T(N) of N scatterers in series, each having a
transmission probability of T, is given by

1-T(N) 1-T T

o 1 T TWegiher

Now the number of scatterers N in a conductor of length L can be written
as vL where v is the linear density of scatterers. Hence we can write

Lo where Lo = T

L+ v(1-T)
as stated earlier in Eq.(2.2.2). It is easy to see that the length L, is of the
order of a mean free path. A mean free path is the average distance an
electron can travel before it is scattered. Since the probability of scatter-
ing by an individual scatterer is (1 - T) we can write (assuming T ~ 1)

1 ~
v(1-T)
The fact that the quantity [(1 — T)/T] has an additive property suggests

that the resistance of an individual scatterer is proportional to it. This
agrees with what we obtain if we write the total resistance as a series

T(L)=

Lo

(1-TWLy ~1 — Ly~
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combination of a contact resistance (G¢') and the ‘actual’ resistance of
the conductor:
1 h 1 h h 1-T
i i TV Ry
26MT 22M 2°M T
= G¢' + “actual’ resistance

2.3 Where is the resistance?

The conductance formula G = (2¢*/h)MT clearly shows that scatterers
give rise to resistance by reducing the transmission probability. This is
intuitively very satisfying because we all feel that the resistance of a
sample ought to be related to the ease with which electrons can transmit
through it. However, it raises interesting questions regarding the nature
and meaning of resistance on a microscopic scale which we will now dis-
cuss.

The basic issue can be illustrated with a simple example. Consider a
waveguide having M modes containing just one scatterer with a transmis-
sion probability of T (see Fig. 2.3.1a). We can view the total resistance
given by Eq.(2.2.1) as an interface or contact resistance G¢' in series
with a ‘scatterer’ resistance Gs':

- h - h 1-T
where Gcl 262M and Gsl 262M —T—

For clarity we will focus just on the resistance due to the scatterer; we
will not worry about the contact resistance. The scatterer resistance Gs'
is clearly determined entirely by the properties of the scatterer, namely,
its transmissivity 7. But can we associate this resistance just with the
scatterer? What about the potential drop (//Gs) associated with this re-
sistance? Does it occur right across the scatterer? What happens to the
Joule heat (I*/Gs) associated with this resistance? Is it dissipated at the
scatterer? The scatterer could be rigid and elastic having no internal de-
grees of freedom to dissipate energy. In that case the heat must be dissi-
pated elsewhere. Is it dissipated before or after the scatterer?
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Fig. 2.3.1 (a) Waveguide with one scatterer having a transmission 7. (b) Energy
distribution of the electrons at different locations along the waveguide. (¢) Normalized
electrochemical potential.

Energy distribution of electrons

To answer these questions we need to consider the energy distribution of
the carriers in the positive and negative k-states both to the left and to the
right of the scatterer. These are sketched in Fig. 2.3.1b. In this discussion
we will neglect interference effects and treat the electrons as semiclassi-
cal particles. The +k states to the left of the scatterer are occupied only
by electrons coming in from the left contact (again assuming that elec-
trons can exit freely into the left contact without suffering any reflection).
Hence these states have the same electrochemical potential as the left
contact, that is, u;. At low temperatures we can write the distribution
function f*(E) for the +k states as
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(left of scatterer) [T (E)s N -E) (2.3.1a)

Similarly the -k states to the right of the scatterer have the same electro-
chemical potential as the right contact, that is, y,. Hence the distribution
function f~(E) for the —k states is given by

(right of scatterer) f(E)sNu: -E) (2.3.1b)

The situation is a little more complicated when we consider the occu-
pation of the —k states before the scatterer or the +k states after the
scatterer. All states are, of course, completely filled below u,. But in the
energy range between p,; and u,, the +k states to the right of the scatterer
are filled only partially (with probability T) by the transmitted electrons
so that

(near right)  f*(E) = %(u2 - E)+ T{8(un - E) - (2 - E)} (2.3.2a)
Similarly for the -k states to the left of the scatterer
(near left) f~(E) = H(uz - E)+(1-T){O(m - E)- 0z -E)}  (2.3.2b)

These distributions are highly non-equilibrium distributions and are only
valid very near the scatterer. If we move more than a few energy relax-
ation lengths away from the scatterer the electrons will settle down to
lower energies and a Fermi distribution will be established:

(far left) f (E)= O(F' - E) (2.3.3a)
(far right) f*(E) = 9(F"- E) (2.3.3b)

The appropriate electrochemical potentials F' and F" are determined by
noting that the total number of electrons integrated over all energy must
remain the same although the distributions change from those in
Eq.(2.3.2a,b) to those in Eq.(2.3.3a,b):

F'mpy, +(1- T)[ul - uz] (2.3.43)

F'mp + T - 2] (2.3.4b)

Here we are assuming that the energy relaxation processes help establish
equilibrium among the +k states and among the -k states but do not
cause any transfer of electrons between the two groups. This helps to keep
the discussion simple. If the inelastic processes responsible for energy



68 Conductance from transmission

relaxation also cause backscattering from +k states to —k states then they
would introduce additional resistance. In our simplified model they relax
energy without relaxing momentum and thus do not contribute to the
resistance.

Spatial variation of the electrochemical potential

Now we are ready to investigate the questions posed earlier regarding the
spatial location of the resistance. First let us see how the electrochemical
potential varies across the scatterer. For the +k states it is equal to p,
everywhere to the left of the scatterer and equal to F" to the far right of
the scatterer. Immediately to the right of the scatterer (before energy
relaxation has taken place) the distribution is strongly distorted from a
Fermi function so that strictly speaking the electrochemical potential is
not well-defined. However, we could define a potential such that when we
integrate the corresponding Fermi function over energy we obtain the
correct number of electrons. The potential to the immediate right of the
scatterer will then be the same as that to the far right after energy
relaxation. Thus we have for the +k states

Fr=p (left)
=F"=pu; + 1{[11 - Mz] (right)

We should remember, however, that immediately to the right of the scat-
terer, before energy relaxation has taken place, the electrons are ‘hot’ and
the electrochemical potential only gives the correct number of electrons.
It does not describe the energy distribution of the electrons.

It is convenient to define normalized potentials u*, u~ which are ob-
tained from F*, F~ simply by setting y, =0 and p; = 1:

u* =1(left) and u* =T (right)
Similarly the normalized potential for the -k states is given by
u =1-T(left) and u~ =0 (right)

Figure 2.3.1c shows the variation of the normalized potentials across
the scatterers. There is a sharp drop across the scatterer just as we would
expect for a localized resistance. The normalized potential drop across
the scatterer is equal to (1 - T) for both the positive and the negative
k-states. The actual potential drop eVs is simply the normalized drop
multiplied by the applied potential (u1 = u2):
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eVs = (1- T)[m - 2]

What happened to the rest of the applied bias T (i1 — u2)? It is dropped
at the interfaces with the contacts. These are precisely the potential drops
we would expect for a current

I = Qel)MT{m - pz ]

flowing through the scatterer resistance in series with the contact resis-
tance:

1 h 1-T
g =

h
—— and G=
2M T 20°M

As we noted earlier (see Fig. 2.1.3) there is an ambiguity with respect
to the spatial location of the contact resistance G¢'. If we were to meas-
ure the potential for the +k states then the potential drop associated with
GZ' would occur at the interface with the right contact and we might
conclude that the contact resistance was located at the right interface.
But if we were to measure the potential for the -k states then we would
conclude that it was located at the left interface. Another possibility is to
look at the average of u* and u~. The resistance is then equally divided
between the two interfaces.

Where is the heat dissipated?

It is clear from the above discussion that the potential drop I/Gs indeed
occurs right across the scatterer and from this consideration we might
view the resistance Gs' as being spatially located at the scatterer. What
about the Joule heat I?/Gs? Assuming that the scatterer is rigid with no
internal degrees of freedom it cannot dissipate the heat. The dissipation
has to occur through inelastic processes such as phonon emission that can
remove energy from the electrons. Earlier when discussing the energy dis-
tribution of the electrons we mentioned that the energy distribution for the
+k states to the right of the scatterer (and that for the —k states to the
left) would evolve from a highly non-equilibrium distribution to a Fermi
function as we go away from the scatterer (see Fig. 2.3.1b). This evolution
of the electron energy distribution requires the dissipation of heat and it
takes place over a distance of the order of an energy relaxation length
from the scatterer.

To describe this in more quantitative terms we note that the heat dissi-
pation Py is given by the spatial gradient of the energy current Iy:



b l J u (2'3 ‘5 )

The energy current can be calculated if we know the energy distribution
i(E) of the current that flows at any spatial location.

Iy = % fEi(E)dE

Noting that the net current ] is given by
I= f i(E)YdE

we could define an average energy U of the current as

v o JEENE  efy 2.3.6)

fi(E)dE 1

From Eqgs.(2.3.5) and (2.3.6) we can write (note that the current [ is
spatially constant)

I1qu
B= s 237
Thus if we are interested in the power dissipation then we should look at
the average energy U of the current distribution which can be very differ-
ent from the electrochemical potential because of the highly non-equilib-
rium energy distributions that arise around a scatterer over a distance of
the order of an energy relaxation length,

To obtain U we first calculate the current per unit energy given by

2eM
h

i(E) = ==(f*(B)- f(B))

where f*(E) and f~(E) are the distribution functions for the +k and the -k
states respectively. Using the distribution functions from Fig. 2.3.1b we
obtain the current distributions shown in Fig, 2.3.2a. The average energy
of the current (U) is straightforward to calculate:

U=(F'+m)/2 (far left)
=+ p42)/2 (near left and near right)
=(F"+uz)/2 (far right)

The normalized average energy of the current (obtained from U by setting
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Fig. 2.3.2. (a) Energy distribution of the current i(E) at different locations. (b) The

normalized average energy of the current. Also shown for comparison is the

normalized average electrochemical potential of the +k and —k states shown in Fig,
2.3.1c.

1 =1 and p, = 0) is shown in Fig. 2.3.2b. Also shown for comparison is
the average electrochemical potential u (obtained by averaging u* and u-
in Fig. 2.3.1¢). The point to note is that while the electrochemical poten-
tial drops sharply across the scatterer, the average energy of the current
changes slowly over an energy relaxation length which is the distance re-
quired to dissipate the Joule heat associated with Gs'.

Thus when we consider how the Joule heat associated with Gs' is
dissipated it would seem that the resistance Gs' is not localized at the
scatterer. One viewpoint we could adopt is that the resistance Gs' is
localized at the scatterer and that the Joule heat associated with Gs'
goes locally into the electron system. It heats up the electron flux away
from the scatterer (to the left and to the right). Eventually of course this
excess energy is dissipated to the lattice. Where and how this occurs is
determined by the inelastic processes that are inevitably present. But this
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energy relaxation has little effect on the resistance Gs', which is deter-
mined entirely by the momentum relaxation caused by the scatterer.

Resistivity dipoles

We have seen that the quasi-Fermi energy F, drops sharply at the scat-
terer (see Fig. 2.3.2b). The reason is easy to see. Immediately to the left
of the scatterer there are lots of electrons arriving from contact 1 but this
number drops sharply as we cross the scatterer because only a fraction
(T) can cross the scatterer. Since the quasi-Fermi energy is a measure of
the number of electrons, it drops sharply (almost discontinuously) at the
scatterer.

How does the electrostatic potential V vary across a scatterer? The bot-
tom of the band E, follows the electrostatic potential energy eV and thus
gives an inverted (because the electronic charge is negative) picture of
the electrostatic potential. The electron density can be written as (see

Eq.(1.2.10))
s =N(F,-E) = 8n, = N,(F, - E,) (2.3.8)

In general E; will follow any changes in the Fermi energy F, keeping the
electron density constant. But E; cannot follow a sharp change in F,. A
change in E; implies an electric field which requires a charge imbalance
around the scatterer. This build-up of charge takes place over a screening
length which is only a few angstroms in metals but can be hundreds of
angstroms in typical semiconductors. As a result, E; and F, separate over
a region whose dimensions are of the order of the screening length (see
Fig. 2.3.3a). In this region, where 8F; = dF,, the electron density will
change. Electrons will pile up to the left of the scatterer while to the right
there will be a deficit (see Fig.2.3.3b), thus forming a mesoscopic dipole
around each obstacle known as a ‘resistivity dipole’. This produces an ex-
tra electric field at the location of the scatterer as shown in Fig. 2.3.3c. A
little reflection shows that this is just a mesoscopic version of what hap-
pens on a macroscopic scale if we sandwich a low conductivity material
between two high conductivity materials. The point to note is that even a
‘homogeneous conductor with a uniform conductivity’ is really extremely
inhomogeneous on a mesoscopic scale. The electric field and the current
flow on this scale are very far from uniform (see R. B. S. Oakeshott and
A. MacKinnon (1994), J. Phys. Cond. Matt., 6, 1513 for some interesting
numerical results).
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Fig. 2.3.3. Spatial variation of () conduction band-edge and electrochemical
potential, (b) electron density and (c) electric field across a scatterer.

Screening length

The screening length can be an important length scale especially in low-
conductance materials. To estimate the screening length we start from the

Poisson equation
e’ (8ns )
ed

V*(3E.) = -

where ¢ is the dielectric constant, d is the thickness of the 2-D electron
system. Making use of Eq.(2.3.8) we can write

€’N,(3F, - 8E,)

vi(or,) - - 2
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that is (V* - B*oE. = -p%SF, (2.3.9)

where B~ = \/ed/e’N, is the screening length. We can write
OF; ~O0F, ®S

where the screening function S is the ‘impulse response’ of Eq.(2.3.9) and
the symbol ® denotes convolution. The spatial variation of E, looks much
like that of F,, except that the sharp changes are smoothed out due to the
convolution with the screening function (see Fig. 2.3.3a). The details of
the solution are not important but the point is that the response decays
exponentially over a distance B~' which can be identified as the screen-
ing length. We can express the screening length in the form

B = Jasd/2

where apm 4mweh’/me’ is the Bohr radius. With m = 0.07 times the free
electron mass and ¢ = 12.6 times the permittivity of free space (values
typical of GaAs) the Bohr radius is about 10 nm. Since the thickness d is
also about 10 nm, a typical screening length is about 5 nm. Note that this
length is much shorter (typically a fraction of a nm) in metals due to the
high density of states.

2.4. What does a voltage probe measure?

The routine procedure for making resistance measurements in large
macroscopic conductors is to use a multi-terminal Hall bridge of the type
shown in Fig. 1.4.1. The current enters through one of the terminals and
leaves through another as in two-terminal structures. But there are addi-
tional terminals along the current path which are left floating (zero exter-
nal current). These terminals serve as voltage probes that sense the local
electrochemical potential (or quasi-Fermi energy). Suppose we fabricate
a similar Hall bridge with two voltage probes located right across
a scatterer (see Fig. 2.4.1a). We have seen in the last section that the
electrochemical potentials for the +k and the —k states vary as shown in
Fig. 2.4.1b. If we assume that the probes will measure the local
electrochemical potential of either the +k or the —k states (or some
specified combination of the two) then we would expect that

per = pp =(1-T)Ap  where Ap = (- p2)
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Fig. 2.4.1. (a) A four-probe arrangement designed to measure the potential drop across

a scatterer. (b) Spatial variation of the electrochemical potential of +k and —k states.

(¢) If the probes are bent as shown they could show an apparent negative resistance if
T>05.

Since the current is given by
I =(2e/))MT Ap

the resistance measured in a four-probe configuration should be

(pr — up2)e h 1-T
- - 24.1
Ru 1 2¢M T @41)

If we try to apply this result we run into three separate problems.
Firstly, mesoscopic probes are often invasive, that is, they change what
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we are trying to measure. With macroscopic conductors, the probes repre-
sent a minor perturbation. Their presence does not change the current
significantly. But for a small conductor, the probes can very well be the
dominant source of scattering (and hence resistance). This, however, is a
practical and not a fundamental problem. There is no fundamental reason
why a voltage probe has to be strongly coupled to the conductor. There
has been some work using weakly coupled scanning tunneling probes to
observe resistivity dipoles around individual scatterers and it is likely that
there will be more of such non-invasive microscopic measurements as
nanotechnology progresses.

Secondly, mesoscopic probes are seldom identical so that the two volt-
age probes could very well couple differently to the +k and -k states. For
example, suppose a probe were bent over to the right like P2 in Fig.
2.4.1c then it could couple much better to +k states than to —k states, This
is because a small deflection would make an electron in a +k state enter
the probe but a large angle scattering is needed to make a -k state enter.
Hence probe P2 would register a potential close to that of the +k state:

ur2 ~TAp

Similarly if a probe were bent over to the left like P1 in Fig. 2.4.1c it
would couple more strongly to a —k state and register a potential close to
that of the -k state:

pe ~(1-T)Au
The measured resistance would then be

(Mm - Mpz)/e - h 1-2T
I 22°M T

which can even be negative for conductors having T > 0.5!

In practice one has little control over the microscopic potential profiles
that determine the coupling of the probes to the +k and -k states. We ex-
pect to measure the resistance given by Eq.(2.4.1) only if the two voltage
probes couple identically to the +k and -k states. Otherwise the measured
resistance will lie somewhere between the extremes

h 1 h 1-2T
——— and ———
2e°M T 2e°M T

This makes little difference if the conductor is many mean free paths
long. For such conductors, the transmission probability is much less
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than one (see Eq.(2.2.2)) and there is hardly any difference between 1 and
(1-27).

Finally mesoscopic measurements are strongly affected by quantum
interference effects unless the distance of the probes from the scatterer is
much greater than the phase-relaxation length. Consider for example a
strongly reflecting scatterer with T << 1. In that case the electrochemical
potentials for the +k and -k states are both nearly equal to one to the left
of the scatterer and zero to the right of the scatterer (see Fig. 2.4.1b). We
would expect that a probe to the left of the scatterer should measure a
potential of approximately one (equal to that of the left reservoir). How-
ever, due to quantum interference it could measure any potential between
zero and one depending on its distance from the scatterer. The reason is
that the probe may not be able ‘see’ the electrons from the left reservoir
due to destructive interference between the incident wave and the
reflected wave (for a quantitative description of this effect see Exercise
E.3.1 at the end of Chapter 3). As a result it could float to a potential
closer to that of the right reservoir even though it is located to the left of
a strongly reflecting scatterer! We can use Eq.(2.4.1) to describe the four-
terminal resistance only if such interference effects are either absent
(because of a short phase-relaxation length) or carefully eliminated (by
averaging measurements over a wavelength or using ‘directional couplers’

to couple the probes so that they see only the +k or the —k states).
The issue of quantum interference serves as a strong reminder of the

limitations of the semiclassical concepts that we have used for our dis-
cussion in the last section. We calculated the distribution functions for
the +k and the -k states, f* and f~, and used these distribution functions
to derive electrochemical potentials (or quasi-Fermi energies) for the two
groups of states. This is analogous to what device engineers routinely do
when analyzing structures involving the transport of both electrons and
holes. In a p—n junction, for example, electrons and holes often have very
different quasi-Fermi energies. However, it is important to remember that
in phase-coherent conductors the +k and -k states can be strongly corre-
lated so that distribution functions only tell part of the story.

The problem can be appreciated by considering a simple analogy with
optics. A beam of unpolarized light is a 50-50 mixture of photons that are
polarized in the x-direction and photons that are polarized in the y-direc-
tion. But so is a beam of light that is polarized at 45 degrees to the x-axis.
Yet the two are physically very different and there are many experiments
that can distinguish between them. One way to represent this difference is
by using a density matrix:
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05 0 05 05
{ 0 0.5] {0.5 0.5]
(unpolarized) (45degree polarized)

The diagonal elements of the density matrix represent the usual distribu-
tion function while the off-diagonal elements represent phase-correlations.
For unpolarized light, the x- and y-polarizations are uncorrelated so that
the off-diagonal elements are zero. For 45-degree polarized light the off-
diagonal elements are as large as the diagonal ones due to the perfect
phase correlation between the x- and y-polarizations.

We have an analogous situation in phase-coherent conductors with +k
and -k states playing the roles of x- and y-polarizations. The distribution
function only gives us the diagonal elements. The rest of the story is con-
tained in the off-diagonal elements which cannot be neglected unless the
phase-relaxation length is much shorter than the other length scales. To
describe the internal state of phase-coherent conductors we need concepts
like density matrices or correlation functions which we will postpone till
the last chapter of this book. We will now describe an approach that was
developed by Biittiker following the work of Engquist and Anderson (see
Refs. [2.3], [2.4]), which allows us to describe multi-terminal phase-
coherent conductors directly in terms of measured currents and voltages,
completely bypassing any questions regarding the internal state of the con-
ductor. This makes it possible to handle a complex topic like quantum
magnetotransport without the use of advanced concepts (as long as
‘vertical flow’ can be neglected, as explained in Sections 2.6 and 2.7).

Biittiker formula

Since 1985 many mesoscopic experiments have been conducted using
miniature Hall bridges fabricated on both metallic and semiconducting
samples. However, because of the reasons mentioned above, for a while
there was serious confusion about how such four-terminal measurements
should be interpreted. Indeed there was no consensus regarding the two-
terminal resistance either, primarily because the importance of the con-
tact resistance in this context was not recognized (although for pedagogi-
cal reasons we have chosen to start this chapter with a discussion of the
contact resistance).

Biittiker found a simple and elegant solution to this problem. He noted
that since there is really no qualitative difference between the current and
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voltage probes, one could treat all the probes on an equal footing and
simply extend the two-terminal linear response formula

2
1= =T - o]
by summing over all the terminals (indexed by p and g) as follows

I, = Ehg;[fl'-p”p = Tp'-q”q]

We can rewrite this in the form (with V = u/e)

h-zﬂmn—QQﬂ (2.4.2a)
q
2e% —
where Gpy = - I,., (2.4.2b)

The arrows in the subscripts have been inserted just as a reminder that the
electron transfer is backwards from the second subscript to the first one.
We will generally write the subscripts without the arrows.

The coefficients G in Eq.(2.4.2) must satisfy the following ‘sum rule’,
regardless of the detailed physics, in order to ensure that the current is
zero when all the potentials are equal:

Gp=) Gy 243)
3o--3
This allows us to rewrite Eq.(2.4.2) in an equivalent form
Q-EGA%—W] (2.4.4)
q

The conductance coefficients (G) also obey the relation (B: magnetic
field)

[qu ]+B = [GPq ]_3 (2.4.5)

Unlike the sum rule in Eq.(2.4.3), there is no simple reason why this rela-
tion has to be true regardless of the detailed physics. To prove this, one
needs to assume a particular model for the transport. Experimentally,
however, there is no evidence that this relation is ever violated (in the
linear response regime) regardless of the nature of the transport. In
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Chapter 3 we will prove this relation for coherent transport using the
properties of the S-matrix.

A couple of comments before we proceed. Firstly we note that the
potential Vp at a voltage probe can be written from Eq.(2.4.4) as (setting
Ir=0)

This means that the potential measured at a floating terminal P is simply
a weighted average of all other terminal potentials ¢ and the weighting is
determined by the conductance coefficient Gp, which is proportional to
the transmission function from the terminal g to the floating terminal P.
The shape and construction of the probes affects the measured potential
through the transmission functions. The probes in Fig. 2.4.1a and Fig.
2.4.1c will register different potentials and we can calculate these in a
straightforward manner.

The second point is that if the magnetic field is zero then the
coefficients are symmetric and Eq.(2.4.4) is precisely what we would get
if we applied Kirchhoff’s law to a network of conductors G, (= G,4) con-
necting every terminal g to every other terminal p. This simple resistor
model, however, cannot be used in a non-zero magnetic field since the
conductance coefficients (G) are usually not symmetric, that is,
Gy # Gpg.

Let us now look at a three-terminal structure and a four-terminal struc-
ture to see how the Biittiker formula is actually applied to conductors
having voltage probes.

Three-terminal device

For simplicity we first consider a three-terminal device where one of the
terminals serves both as a voltage and as a current terminal. Suppose it is
connected up as shown in Fig. 2.4.2a (or 2.4.2b). To calculate the resis-
tance Ry = V/I (or the resistance R's; = V'/I') we start from Eq.(2.4.4):

I G, +Gis -G -Gis Vi
L= -Gz G +Gn -G Vi
L =Gs -Gs; G +Gn || Vs
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Fig. 2.4.2 (a) A three-terminal conductor with an external current I flowing from
terminal 3 to 1. A voltage drop V is measured between the terminals 2 and 3. (b) The
same conductor with the current and voltage terminals reversed.

Actually we do not need to solve the set of three equations since they are
not independent. The sum rules ensure that Kirchoff’s law is satisfied,
namely, I, + I; + I; = 0. Also since the currents only depend on voltage
differences between different terminals we can without loss of generality
set one of the voltages to zero. We will set V3 = 0. This allows us to trun-
cate the third row and the third column of the matrix and write

5L G + Gis -G, Vi
L -Gn Gn +Gn |V,
Inverting we obtain
Vi Rn R(h
- 2.4,
{Vz } [Rzl Rxn HI 2 } (2.4.6)

where the matrix [R] is defined as

G +G -G 17
12 13 12 } 247)

Rl=
[ ] [ -Gz G2 +Gn

The resistance R3 measured in the configuration shown in Fig. 2.4.2a is
given by
V [V

R3t o= —I— - [71—}12-0 - R21 (2.4-83)
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vV

Fig. 2.4.3 (a) A four-terminal conductor with an external current I flowing from
terminal 4 to 1. A voltage drop V is measured between the floating terminals 2 and 3.
(b) The same conductor with the current and voltage terminals reversed.

while the resistance measured in the configuration shown in Fig.2.4.2b is
given by
R'y = K,‘ A = Rp, (2.4.8b)
I L,

Four-terminal device

Next we consider a four-terminal device as shown in Fig. 2.4.3a or 2.4.3b.
The basic procedure is the same as in a three-terminal device. We set the
voltage at one of the terminals (say V,) equal to zero and write out
Eq.(2.4.4) for the currents at the other terminals in the form of a matrix
equation:
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I G2 + Gis + Gy -G, =Gy3 Vi
L= -G Gn +Gxs+Gu -G Vi
I -G -Gs; G +Gn +Gu || Vs

Inverting we obtain

i Ry R: Rs](h
Vil=|Ry Ra Rs|lL (2.4.9)
Vi Ry Ry Rus||b

where the matrix [R] is given by

G2 + Gis + Gus -Gz -Gis -
[R]= -G G + G +Gu -Gz (2.4.10)
-Gy -Gs; G31 + Gy, + G

The resistance R4, measured in the configuration shown in Fig. 2.4.3a is
given by

h

] = R21 - R31 (2.4.113)
Lwl3=0

while the resistance R's; measured in the configuration shown in Fig.2.4.3b
is given by

'
R y= . =R - R (2.4.11b)
I' 12 L0, L=-13
Reciprocity

In a macroscopic rectangular Hall bridge the resistance R4 would be re-
lated to the p.. component of the resistivity tensor which was shown by
Onsager (using thermodynamic arguments) to be symmetric in the mag-
netic field.

Px(B) = p=(-B) = Ru(B)=Ru(-B)

In mesoscopic Hall bridges it is found that the resistance R4 fluctuates
randomly as a function of the magnetic field (perpendicular to the plane
of the conductor) due to random interference among multiple scatterers
(we will discuss this in Chapter 5). The fluctuations have no particular
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symmetry in the magnetic field. This caused some consternation initially
since based on our experience with macroscopic Hall bridges it was
expected that R4 (B) should be equal to R« (~B). But it was soon realized
that the current flow on a mesoscopic scale is very irregular (due to
random scatterers) and not directed along x or y even in a rectangular
conductor. Consequently the measured resistance Ry is some average of
both p. and p,, components of the resistivity tensor. Since the component
Psy is antisymmetric in the magnetic field (while the component p,, is
symmetric in the magnetic field) the measured resistance R4 is neither
symmetric nor antisymmetric. This is what we would see even with large
conductors if we were to make measurements on an irregularly shaped
Van der Pauw sample. The point is that the current flow pattern on a
mesoscopic scale is quite irregular even though the shape of the
conductor may be rectangular.

For arbitrarily shaped macroscopic conductors, it has long been known
that if we reverse the magnetic field and reverse the current and voltage
terminals (as we have done in going from the setup in Fig. 2.4.2a to the
setup in Fig. 2.4.2b or from Fig. 2.4.3a to Fig. 2.4.3b), then the measured
resistance will be the same as before; that is,

Ry(+B)=R% (-B) and Ru(+B)=R'(~-B) (2.4.12)

This relation, known as the reciprocity relation, was originally derived for
macroscopic conductors using thermodynamic arguments. But is it true for
mesoscopic conductors? Experimentally the answer is yes (see Fig. 6 in
R. A. Webb and S. Washburn (1988), Physics Today, 41, 52).

We will now make use of the reciprocity of the conductance
coefficients stated earlier

[G.,,,]+B = [qu]_ 5 (same as Eq.(2.4.5))

to show that the three-terminal and four-terminal resistances that we have
calculated above from the Biittiker formula indeed obey the reciprocity
condition set forth in Eq.(2.4.12). Looking at the definition of [R]
(Eq.(2.4.7) for the three-terminal geometry and Eq.(2.4.10) for the four-
terminal case) it is obvious that the reciprocity of the conductance
coefficients implies that reversing the magnetic field transposes the
matrix [R™'], that is,

[&], =[r"L, (2.4.13)
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except for one point. It may not be apparent that the diagonal elements of
[R''] are unchanged when the magnetic field is reversed. To see this we
need to make use of the sum rule for the conductance matrix (see

Eq.(2.4.3)):
2[Guls = D[Gals = D[Gunl,
Since G,,(+B) = G,(-B) this implies that

2 [Gn]s = X (G,

q-p qmp

showing that the diagonal elements of [R™'] are unchanged when the mag-
netic field is reversed.

Since [R™']" = [R"]"}, it follows from Eq.(2.4.13) that reversing the mag-
netic field also transposes the matrix [R]:

[R]+B - [RIB (24.14)
Hence
[R31]+B - [R13]-B and [R21 ]+B - [R12 ]-B

Making use of Egs.(2.4.11a,b) for the four-terminal resistance (or
Eqgs.(2.4.8a,b) for the three-terminal resistance) it is easy to see that the
reciprocity condition in Eq.(2.4.12) is satisfied. The correct prediction of
the reciprocity properties observed experimentally in four-terminal meso-
scopic structures was the first important application of the Biittiker
formula [2.4].

The Biittiker formula (Eq.(2.4.4)) provides a terminal description in
terms of measured currents and voltages, completely bypassing any ques-
tions regarding the spatial variation of the potential inside a sample. It
has been used widely by both theorists and experimentalists to understand
and interpret mesoscopic four-probe resistance measurements. A number
of interesting phenomena have been observed in narrow Hall bridges
which are all related to the non-intuitive behavior of mesoscopic voltage
probes discussed earlier. The common feature of all these phenomena is
that they require us to view the probes as extensions of the waveguide
itself and calculate the resistance of the composite probe—device
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configuration using Eq.(2.4.4) (see Exercises E.2.3 and E.2.4 at the end of
this chapter). A fairly detailed review of these experiments can be found
in Ref.[2.5] and will not be repeated here.

2.5 Non-zero temperature and bias

Our derivation of the Landauer formula in Section 2.2 was simplified by
the assumption of zero temperature so that transport occurred only from
contact 1 to 2 and not from 2 to 1 (see Fig. 2.5.1b). We also assumed that

E
(b) i+ i+ f
1 2
>
~EEa .
+ 1
Ve fHe
© EA AE
-+ +
L — — iy
i €— <,

H1

— H2

Energy channels
in a conductor

lr® HL® 1

Fig. 2.5.1 (a) A conductor is connected to two large contacts through two leads.
(b) Energy distributions of the incident electrons in the two leads at zero temperature.
(¢) Energy distributions at non-zero temperatures.
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the current was carried by a single energy channel around the Fermi
energy.This allowed us to write the current simply as

1= 2 Tpn - )

where T denotes the product of the number of modes M and the trans-
mission probability per mode T at the Fermi energy (assumed constant
over the range u; > E > u,).

In general, however, we have the situation depicted in Fig. 2.5.1c
where transport takes place through multiple energy channels in the
energy range

1 + (a few kgT) > E > u, - (a few ksT)

and each channel can have a different transmission T. Under these con-
ditions an expression for the current can be derived in much the same
way as in Section 2.2 except that we now need to include injection from
both contacts. The influx of electrons per unit energy from lead 1 is given
by (see Fig. 2.5.1¢)

it (E) = (2e/h)Mfi(E)

while the influx from lead 2 is given by (M' is the number of modes in
lead 2)

iz (E) = (2e/h)M'fo(E)

The outflux from lead 2 is written as

B(E)=Tif(E)+(1-T")iz (E)
while the outflux from lead 1 is written as

i (E)= (L-T) it (B) + T'i5 (E)
The net current i(E) flowing at any point in the device is given by

WE)=if —if =03 —i3
=T =T'i;

- [ ME(E) AE)- M EXT(E)(E)]
Defining the transmission function as T (E) = M(E) T(E) we can write

i(E) = Z[T(E) H(E)- T (B) £(B)]
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The total current can be written as
- ft(E)dE where i(E) = ——T(E)[ AE)-H(E)]  @251)

if we assume that T(E)=T'(E). But why should the transmission func-
tion from 1 to 2 be equal to that from 2 to 1? One could argue that they
ought to be equal in order to ensure that there is no current at equilibrium
(that is, i(E) = 0 when fi(E) = f2(E)). However, this argument only proves
that T(E) should equal T'(E) at equilibrium. As we move away from
equilibrium, the applied bias could change the two transmission functions
and make them unequal. Thus T(E)= T'(E) in general. However, if we
assume that there is no inelastic scattering (from one energy to another)
inside the device, then it can be shown that T (E) is always equal to
T'(E) for a two-terminal device even in the presence of magnetic fields.
We will provide a more rigorous derivation of Eq.(2.5.1) in Section 2.6.
For the moment let us accept it and work out some of its consequences.

Linear response

If both contacts are held at the same potential then p; = w2 and Eq.(2.5.1)
predicts zero current, as we would expect: fi(E)= f,(E)—I=0. For
small deviations from this equilibrium state, the current is proportional to
the applied bias. We can write from Eq.(2.5.1)

& =22 [([T®) 315 - £1+[5 - 5], T E))E

The second term is clearly zero. We can simplify the first term by using a
Taylor’s series expansion to write

8[)'1—)'2]”[#1-#2](%)“l ( afo)[ﬂl He]

where fo(E) is the equilibrium Fermi function (see Eq.(1.2.7))

1
E)=
fo(E) pr((E — uyksT))+ ILE,
We then obtain the (non-zero temperature) linear response formula

_ 2¢° o
= —(#1 ~aye e T (E)( ) 25.2)
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At low temperatures we can write

FE~OE-E) ~ -2 5 -E)

so that Eq.(2.5.2) reduces to the zero temperature linear response result:

2e? -
G- —;— T(Er) (2.5.3)
Note that in Egs.(2.5.2) and (2.5.3) we have dropped the subscript ‘eq’ for
clarity. It is implied that the quantities on the right are all evaluated at

equilibrium: linear response is an equilibrium property.

When is the response linear?

From the above derivation it would seem that the response should be lin-
ear if the bias (u; — y2) is much less than ksT, so that the Taylor’s series
expansion is accurate. While this is certainly a sufficient condition it is
not a necessary condition. If this were a necessary condition then there
would be no linear response at zero temperature! Actually, the response is
linear regardless of the temperature if the transmission function T(E) is
approximately constant over the energy range where transport occurs, and
can be assumed to be unaffected by the bias. We can then write from

Eq.(2.5.1)
2e =
1= ZTEAE)- fHEME
At low temperatures it is easy to see that

JIAE) - f(E)HE = i - 2

since fi(E)~HN w1 -E) and fo(E)~HNu:-E) (see Eq.(1.2.9)). This
result is actually valid at high temperatures as well, though it is not as
easy to see. We thus obtain a linear relationship between the current and

the applied bias
2e —
I= —th(Ef)[ul - 2]

for arbitrary temperatures, as long as the transmission function is indepen-
dent of energy and unaffected by the bias.
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We can arrive at a general criterion for linear response by rewriting
Eq.(2.5.1) in the form (see Exercise E.2.7 at the end of this chapter)

1]
=1 fG(E' YdE' (25.4)
€ M
where the conductance function is defined as
. 2% _
G(E')= —h—fT(E)Fr(E -E'")E (25.5)

Fr(E) being the thermal broadening function

d 1 1 E
E =—— = h2 2. .
EE)=-4 (cxp(E/kBT)+1) 4o (ZkBT) (25.6)

This new expression for the current (Eq.(2.5.4)) makes it easy to see when
the current will respond linearly to the applied bias. It will respond lin-
early if the conductance function G(E) is independent of energy in the
energy range u; > E > u;. We can then write the current as

I1=GE)BL
e
where the conductance is given by
- 2% ._
G = G(E;) = —h—fT(E)Fr(E - E¢)dE

2e” = d 1
Y T expl(E - Et YksT] +1

in agreement with the result obtained earlier (Eq.(2.5.2)).

At low temperatures when the phase-relaxation time is long, quantum
interference can give rise to sharp resonant structures in the transmission
characteristics of conductors having multiple sources of scattering. For
this reason the transmission T(E) often changes rapidly with energy (or,
in other words, the correlation energy is small) at low temperatures in
mesoscopic conductors as sketched in Fig. 2.5.2. A good estimate for the
correlation energy of a diffusive conductor of the type sketched in Fig.
133is

€= LI 0.006 meV if 7, =100 ps

Ty
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Fig. 2.5.2. The_ conductance function G(E) is obtained by convolving

the transmission T'(E) with the thermal broadening function F1(E). The current is

obtained by integrating the conductance function G(E) over the range of the applied
bias from u; to .

If we were truly at zero temperature such that the thermal smearing func-
tion is a delta function then the response would be linear only if the
applied bias were much less than this correlation energy. But the effect of
temperature is to smear out the sharp features to produce a relatively
smooth conductance function G(E) which varies only on the scale of the
thermal energy kT (~ 0.01 meV at T =0.1 K). So the response is linear
as long as the bias is much less than k7. In mesoscopic experiments the
bias is always kept smaller than ksT in order to ensure that the measure-
ments are in the linear response regime.

Thus the criterion for linear response in systems with a small correla-
tion energy is given by (u: — u2) << kg7. But if the correlation energy is
large then the transmission function T is fairly smooth to start with and
the smoothing action of the thermal function Fr(E) is unnecessary. The
response could then be linear for much larger values of bias. The general
criterion for linear response is simply that the function obtained by
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volving the transmission function with the thermal smearing function be
constant in the energy range where transport occurs, that is,

(- u2) << kgT + &

It should be mentioned that as the bias is increased an electric field
develops within the conductor which can change the transmission func-
tion T and thereby make the response non-linear. Thus the transmission
is a function of the bias and we should really write it as T(E, u1, 42) and
not just T(E). This aspect of the problem is absent when we consider lin-
ear response (U1, u2 —> Er) but has to be taken into account when apply-
ing Eq.(2.5.1) to high bias situations. Indeed the earliest application of
current formulas of this type was not in the calculation of linear response
conductance but in the calculation of the -V characteristics of tunneling
junctions where the lowering of the tunneling barrier by an applied bias
causes an exponential increase in the transmission. More recently
Eq.(2.5.1) has been used to calculate the /-V characteristics of resonant
tunneling devices (to be discussed in Chapter 6). In all these calculations
it is important to include the effect of the electric field on the transmis-
sion. In some cases it may be adequate to assume a constant electric
field (= V/L) inside the conductor. But in general one has to take into
account the electron density inside the conductor and obtain the electric
field from the Poisson equation, somewhat in the spirit of what we did
when discussing screening lengths at the end of the last section (see Fig.
23.3).

Multi-terminal conductors

For multi-terminal devices we could argue as we did for two-terminal de-
vices and write the current as (different terminals are indexed by p and q)

I = [i,(E)E

where iy(E)= 22 3 [Ty (E)B) - Tn(EVE)]
q

(2.5.7a)

Here T,(E) represents the total transmission from terminal g to terminal
p at the energy E and f,(E) is the Fermi function for terminal p. As in the
two-terminal case (see discussion following Eq.(2.5.1)) we could argue
that since there can be no current flowing at equilibrium, the transmission
functions must satisfy the sum rule

3 To(E) = 3 Tu(E)
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Once again, far away from equilibrium, this relation is true only if there is
no inelastic scattering inside the device. If we assume the sum rule to be
true then the current can just as well be written in the form

lp(E)-—-Equ(E)[fp(E) fo(E))] (2.5.7)

We have seen how the linear response formula Eq.(2.4.4) is applied to
multi-terminal conductors with floating voltage probes. We set the current
Iy at a voltage probe to zero and solve Eq.(2.4.4) to obtain the potential Vp
at the probe. We could do the same with the general current expression
(Eq.(2.5.7)) and set the current ip(E) at every energy equal to zero. But
this is not necessarily justified. All that we know for sure at a floating
probe is that the net current is zero:

Iy -fip(E)dE =0

A better approach is to adjust the electrochemical potential up at the
floating probe so that the net current Ip is zero.

We can linearize Eq.(2.5.7b) as we did earlier for two-terminal
conductors to obtain (fo(E): equilibrium Fermi function)

I, = EGM[V, -V,] (2.5.8)

q
where Gy = j T,,,,(E)( ‘;f;) (2.5.92)
At low temperatures Gpy = —Z-Z— Tpa(Et) (2.5.9b)

All the work on multiterminal conductors so far has been based on this
linear response formula (Eq.(2.5.8)). The author is not aware of any calcu-
lations based on Eq.(2.5.7) although its two-terminal counterpart
(Eq.(2.5.1)) is widely used to analyze quantum devices like tunnel diodes
and resonant tunneling diodes.

2.6 Exclusion principle?

A common question that arises is whether we ought to modify the current
expression (see Eq.(2.5.7a))
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in(E) = = E[T@(E)fp(E) Too(E) fo(E))] (2.6.1)

to account for the exclusion principle:

in(E)= 2 DT fo1- ) ~Tufill- £)] (Wrong)  262)

q

We can rewrite Eq.(2.6.2) in a form that clearly shows the difference with
Eq.(2.6.1):

ip(E)= EE E[qufp - qufq]'[T@ - Tm]fpﬁl

The second term is identically zero if T, = T,, and we recover our
earlier result. As we will see, for two-terminal devices without inelastic
scattering, T 1, is always equal to T ,;. It thus makes no difference
whether we include the (1 - f) factors shown in Eq.(2.6.2). That is why
the distinction between Eqgs.(2.6.1) and (2.6.2) is not appreciated widely,
even though these equations have been applied to tunneling (and later to
resonant tunneling) devices ever since the 1930s. It was only in the late
1980s following the work of Biittiker [2.4] that these equations came to be
applied to multiterminal devices in the presence of magnetic fields where
T, = T, in general. Eqs.(2.6.1) and (2.6.2) can then lead to very different
predictions for the terminal currents.

One might wonder why we should care about Eq.(2.6.1) anyway since
we argued in the last Section that Eq.(2.6.1) is difficult to apply to con-
ductors with floating probes and what we normally use is the linear
response equation (Eq.(2.5.8)). This equation of course has to be valid as
long as the currents depend linearly on the voltage, since it is hard to
imagine any other linear relationship. However, the expression for the
conductance in terms of the transmission (see Eq.(2.5.9)) is obtained by
linearizing Eq.(2.6.1). If we were to include the (1 - f) factors shown in
Eq.(2.6.2), the process of linearization would yield much more compli-
cated expressions for the conductance.

We will show that if transport is coherent across the conductor, so that
we can define a single wavefunction extending from one lead to another,
then Eq.(2.6.1) is the correct expression for the current. On the other hand
if transport is not coherent then in general neither Eq.(2.6.1) nor Eq.(2.6.2)
is correct. The effect of the exclusion principle is more complicated. First
let us see why for coherent transport the current is given by Eq.(2.6.1)
without the exclusion principle factors.
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Scattering states

The reason most people tend to choose Eq.(2.6.2) instinctively is that we
tend to think of the current as arising from electronic transitions between
an eigenstate localized in lead p and an eigenstate localized in lead g
(note how the coordinates x, are defined in Fig. 2.6.1):

|p,k) msin(kx,) — |g,k')m sin(k' x,)

Clearly such transitions are blocked if the final state is occupied and it
seems reasonable to include the (1 - f) factors as shown in Eq.(2.6.2).
However, this view is accurate only if the leads are weakly coupled to
the conductor. As the coupling between the leads and the conductor is
made stronger, the lead eigenstates evolve into scattering states of the
form shown in Fig. 2.6.1. A scattering state (g,k) consists of an incident
wave in lead g, together with scattered waves in every lead p. It carries a
current from lead g onto lead p as long as it is occupied. No transition
from one state to another is needed, so that there is no reason to include
the (1 - f) factors. This viewpoint leads naturally to Eq.(2.6.1) rather than
Eq.(2.6.2), as we will now show.

To keep things simple we consider only one transverse mode in each
lead. There is no loss of generality since we can always treat each indi-
vidual mode as a separate terminal. The wavefunction in lead p due to a
scattering state (g,k) is given by (8,, = 1 if p = q, zero otherwise)

W, (q) = 8pa x5 () explik " x, | + h X, 0p)explikx, ] (2.6.3)

where x; and yx, are the transverse mode wavefunctions for the incident
and scattered waves obtained by solving Eq.(1.6.3). If the vector potential
is zero in the lead then the two functions are identical and k™ = —-k*.

A scattering state (g,k), if occupied, gives rise to a current i (q) per
unit energy in lead p which is given by

ip(@) = 2 (8 = Ti) (264)

where the first term is the ingoing incident current, arising from the first
term in Eq.(2.6.3), and the second term is the outgoing scattered current,
arising from the second term in Eq.(2.6.3). A scattering state (g,k) is
occupied only by electrons that come from the contact connected to lead
q (assuming as we have always done that there is no reflection at the
interface between the lead and the contact). Hence a scattering state
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Fig. 2.6.1. Scattering states in a three-terminal structure.

(g,k) is occupied according to the Fermi function in contact ¢ and the
current in terminal p can be written as

I, - fg fo(E)ip(9)E (265)

Note that we are basically using equilibrium statistical mechanics to treat
a special class of non-equilibrium problems for which each eigenstate

remains in equilibrium, but with a different reservoir. From Eqs.(2.6.4)
and (2.6.5) we obtain

2
I, '“E [fp'Zquﬁl]dE
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We will show in Chapter 3 that for coherent transport the transmission
coefficients obey the sum rule (see Eq.(3.1.5))

2T,,,,-2T,,,,-1
q q

so that we can write the current as

2 2
I === f[E Too(fy - f2)dE] = 2 f[E Tofo - Toafo]dE

For simplicity we considered only one mode per lead. If we consider mul-
tiple modes in each lead we obtain the same expression but with the
transmission coefficient T,, replaced by the transmission function 7,
which is obtained by summing the transmission probabilities T., between
every mode m in lead p and every mode n in lead g:
Tom Y D T
mEp nEq

as shown in Eq.(2.6.1).

One question that we have glossed over is whether the scattering states
are orthogonal and can be filled up independently from different reservoirs
as we have assumed in our discussion. It can be shown that the scattering
states together with any bound states do form a complete orthonormal set
(see A. M. Kriman, N. C. Kluksdahl and D. K. Ferry (1987), Phys. Rev. B,
36, 5953). Recently the set of scattering states has been used to develop
a formal theory not only for the current but also the current fluctuations in
coherent conductors (see, for example, M. Biittiker (1992), Phys. Rev. B,
46, 12485). The theory for such fluctuations is more subtle because we
need to consider the correlations between the wavepackets incident from
different leads and the exclusion principle cannot simply be ignored.

Can scattering states be defined in non-zero magnetic fields?

Let us briefly discuss a couple of subtle points that arise when there is a
non-zero magnetic field in the leads. The first question is whether in the
presence of a magnetic field the eigenstates in the leads can be ex-
pressed in the form of plane waves as assumed in Eq.(2.6.3). We have
seen earlier that if we represent the magnetic field by a vector potential
of the form

A =-xBy
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then the eigenstates in the leads do have the form of plane waves along
the x-direction (see Section 1.7). But this would not be true if we were to
use a different gauge (such as A = yBx). The difficulty is that in general
the x-direction is different in each of the leads. For example, in Fig. 2.6.1,
x3 is orthogonal to x; and xz. So if we were to choose a gauge such that

A~ ley1 ~ ﬁsBxs

then the eigenstates would have the form of plane waves along x; in lead
‘1’ but not along x3 in lead ‘3’. Thus we could not write scattering states
of the form shown in Eq.(2.6.3). We need to choose our gauge such that
the vector potential has the form

A ~ %,By,

in every lead q. It has been shown that this can be done even for conduc-
tors with multiple leads arranged arbitrarily (see Appendix E of H. U.
Baranger and A. D. Stone (1989), Phys. Rev. B, 40, 8169).

Are different transverse modes independent?

The second question has to do with whether we can obtain the net current
by superposing the currents carried by different transverse modes, espe-
cially in the presence of a magnetic field. In other words, are we justified
in going from Eq.(2.6.3) to (2.6.4)? To appreciate the problem, note that
the general expression for calculating the current density J from the
wavefunction ¥ is given by (see R. P. Feynman (1965), Lectures on
Physics, Vol. I1I, p. 21-4, (New York, Addison-Wesley))

¢ 3
J= j(‘l’[(p -eAY] +¥'[(p- eA)‘P]) (2.6.6)
where p= —ihV is the momentum operator. To obtain the total current

carried by a lead we integrate the longitudinal (x-directed) current over
the transverse coordinate (y):

I= j f[\p( Pe—eA )W +¥ (p, - eA,)\p]dy (2.6.7)

If the wavefunction consists of an incident wave

1 + L+
L -—fo (y)cxp[lk x]
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then the current is given by (we are assuming that x(y) is real)
€ + + +

On the other hand if the wavefunction consists of only a scattered wave of
amplitude s'

Y, = s' —\/%x’(y)cxp[ik’x]

then the current is given by

But if the wavefunction consists of both an incident and a scattered wave
Y= x"(y)cxp[ik"x] +s' x’(y)cxp[ik’x]

can we automatically assume that the current is given by I = I; - I, as we
did in writing Eq.(2.6.4)? A direct evaluation of the current from Eq.(2.6.7)
would also give rise to cross-terms of the form

ezl b

However, we do not need to worry about these cross-terms. They are al-
ways zero, by virtue of the following orthogonality relation which is
satisfied by any two transverse mode wavefunctions satisfying Eq.(1.6.3)
(see Exercise E.2.6 at the end of this chapter):

| [x,.* (2 - s ]dy =B

Non-coherent transport
Next we address the question about the effect of the exclusion principle
on the transmission if transport is not coherent. A proper treatment of non-
coherent transport requires advanced concepts that we will discuss in
Chapter 8. However, the basic issues can be appreciated using a rela-
tively simple phenomenological approach to visualize the role of phase-
breaking processes in transport. The key insight is an observation due to
Biittiker (see IBM J. Res. Dev., 32 (1988), 63) that a voltage probe acts as
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Fig. 2.6.2. A device with net current from 1 to 2. The voltage probe in between floats
to an appropriate potential such that there is zero current at the probe.

a phase-breaking scatterer. This can be understood by considering the cur-
rent flow from terminal 1 to 2 in a device having a voltage probe in
between (see Fig. 2.6.2). We can calculate the S-matrix for such a device
using the Schrédinger equation if we assume that transport is fully coher-
ent between any pair of terminals. The point to note is that in this
structure the net current flows from terminal 1 to 2 since there is no
external current at a floating probe. This current has both a coherent and
an incoherent component. A fraction of the electrons goes directly from 1
to 2 bypassing the probe entirely; this is the coherent component. The
remaining electrons from 1 enter the probe and have their phases
randomized before they are reinjected into the device. Some of these
electrons then reach 2 (the rest are returned to 1); this is the incoherent
component. The presence of the voltage probe thus introduces an
incoherent component to the overall current flow from 1 to 2, much like a
phase-breaking scatterer. We can reverse this argument to conclude that
phase-breaking scatterers can be simulated by introducing conceptual
voltage probes where none exist in the real structure.

A conceptual probe with the appropriate properties can thus be used to
simulate the effect of phase-breaking processes. A partially coherent con-
ductor or an incoherent conductor can be visualized as a fully coherent
conductor with a conceptual probe stuck to it. The current in such a struc-
ture can be described by an equation of the form

2e =

ip(E) = g’;‘i 2 TM(E)[fP(E) - fq(E)] + W pr(E)[fp(E) = fw(E)] (2.6.82)

where the index g runs over all the real terminals while the index ¢
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denotes a fictitious phase-breaking probe attached to the conductor. The
current at the fictitious probe is given by

()= 22 3 TuB) fo(B)- £o(E)] (26.85)

We can use Eq.(2.6.8b) to express the distribution function at the
fictitious probe, f(E), in terms of those at the real terminals (f;(E)).

fo= %[io +2TquJ where By =3 T (269)

Substituting this expression back into Eq.(2.6.8a) we obtain an expression
for the current where the phase-breaking probes have been eliminated but
their effect is incorporated into a set of effective transmission coefficients
among the real terminals:

.2 —=e 2er= = 1.
ip = 5= 2 T [fo = £,]- 7 [TowlRe Ji (2.6.10)
q
where
N o,
Lo T+ PI%,,W (2.6.11)

If we neglect the current at the fictitious probe, i(E), then Eq.(2.6.10)
has exactly the same form as the current expression for coherent transport
without any exclusion principle factors (Eq.(2.6.1)). However, there is no
reason to assume that i(E) = 0. Scattering processes take electrons out
from one energy channel and reinject themt at another channel.
Consequently i,(F) is negative at some energies (representing outscatter-
ing) and positive at some others (representing inscattering). All that we
know for sure is that the net current integrated over all energies must be
zero

[is(E)E =0 (2.6.12)

since the net outscattering must balance the net inscattering.

The function ix(E) describes what we will refer to as ‘vertical flow’,
namely, the flow of carriers from one energy channel to another. In gen-
eral these vertical currents depend on the Fermi functions in the contacts
f(E) in a complicated manner due to the exclusion principle. This is, of
course, not the case for non-degenerate systems, but the experiments of
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interest in mesoscopic physics are largely low temperature experiments
involving degenerate electron systems. In such conductors the exclusion
principle does affect the terminal currents through the vertical current
io(E). Note, however, that the effect of the exclusion principle cannot be
accounted for with simple ad hoc measures (such as inserting (1 - f) fac-
tors as shown in Eq.(2.6.2)). A detailed microscopic theory is needed to
calculate the vertical currents.

But could we not calculate the correct vertical currents i, (E) from a
microscopic theory and include it in the probe model? Yes, we could, and
roughly speaking, that is what the Green’s function formalism described
in Chapter 8 does. We say ‘roughly speaking’ because the full story is
somewhat more complicated. Our discussion has been based on a phe-
nomenological model for dephasing which illustrates the basic issues
quite well and often gives fairly accurate results. But it oversimplifies one
detail. We assumed that the distribution function at the fictitious probe
can be described by a simple function f(E) just like real probes. But it is
easy to see that different points () inside the conductor will have differ-
ent distribution functions so that the ‘probe’ covering the conductor should
be described by a function of the form fi(r.E). Actually the general situa-
tion is even more complicated because one needs to keep track of phase
correlations between different points and the ‘probe’ has to be described
by a correlation function (or density matrix) of the form f,(r,r';E). This is
explained in Section 8.7 after we discuss the detailed microscopic theory.
The main point we wish to make here is that the vertical currents are
difficult to calculate without a detailed microscopic theory. The simplest
way to get around this problem is to neglect vertical currents altogether
and set i(E) = 0. This may sound like a rather drastic assumption but it
actually works remarkably well in many cases as we will discuss in the
next section.

2.7 When can we use the Landauer-Biittiker formalism?

We have seen that if transport is coherent across the conductor, then the
current per unit energy is given by

(E) = 2= D Tu(Efo(E) - £:(B)] @7.1)

without any exclusion principle-related factors for the receiving contacts.
This is a rigorous result. It is only for non-coherent transport that the
transmission function is affected by the exclusion principle and the appli-
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cability of the Landauer—Biittiker formalism can be questioned. For non-
coherent transport we can use a phenomenological model to express the
current in the form (see Eq.(2.6.10))

b(B) = 22 S T 5E) - 1))
h G (27.2)

- 2o E) R E i E)

As we have discussed, the vertical current i ,(E) is affected by the exclu-
sion principle in a complicated way and it is difficult to do justice to this
term without a detailed microscopic theory. The simplest way to get
around this problem is simply to set iz(E) = 0. In this section we will ex-
plain the meaning and consequences of this assumption. As we will see,
it actually works much better than one might expect.

Non-coherent elastic transport

Consider the transport of electrons across a device that is much longer
than the phase-relaxation length. Typically the motion of an electron will
involve both ‘vertical’ and °‘lateral’ flow as sketched in Fig. 2.7.1a. An
electron will propagate coherently in one energy channel for a while, suf-
fer an inelastic scattering which will transfer it to another energy channel,
propagate coherently in the new channel, suffer another inelastic scatter-
ing and so on. In general, under these conditions, exclusion principle-
related factors will enter the expression for the current in a complicated
way, thus severely limiting its usefulness.

However, the exclusion principle-related factors disappear even for
non-coherent transport, if we make a simplifying assumption. The assump-
tion is that there is no net ‘vertical’ flow. Every electron that scatters out
of a channel at E; into another channel at E,, is balanced by another elec-
tron that scatters out of E; into E;. Of course this means that there is no
net exchange of energy between the electrons and the surrounding lattice
and hence no dissipation or energy relaxation. However, our discussion in
Section 2.3 shows that energy relaxation is only incidental to the problem
of calculating the resistance. Momentum relaxation is what gives rise to
resistance. Energy relaxation only helps to keep the energy distribution of
the electrons close to equilibrium and often has no significant impact on
the resistance. Thus this transport model (which we will refer to as non-
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(a) Actual transport with inelastic scattering

TE E A
.

By~

Energy channels
in a conductor

17 /B r® 1

(b) Idealized transport without 'vertical flow'

AL @ Phase-breaking process EA

.
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Fig. 2.7.1. (a) Transport with inelastic processes involves ‘vertical’ as well as ‘lateral’
flow. (b) If we assume that there is no net vertical flow then we can replace the real
problem with an idealized one where transport is elastic but not necessarily coherent.

coherent elastic transport) can often be used to calculate the current flow
through a conductor with reasonable accuracy.

The assumption of no net vertical flow allows us to visualize transport
as proceeding via independent energy channels as depicted in Fig. 2.7.1b.
An electron in a particular energy channel propagates coherently for a
while, suffers a phase-breaking process, continues on in the same chan-
nel, suffers another phase-breaking process and so on. In this case too
exclusion principle related factors can simply be ignored and we can
express the current in terms of the transmission function just as we did for
coherent transport. But the transmission of electrons from one contact to
the other is not a single coherent process. Instead it is characterized by
repeated phase-breaking along the way.
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Does vertical flow have any effect on the resistance?

The next question we ask is what physics are we missing by neglecting
vertical flow and adopting an elastic model for transport. Consider the fol-
lowing ‘thought experiment’. We have a real sample with elastic and in-
elastic processes and we wish to calculate the current I through it for a
particular bias. Let us replace it conceptually with another sample which
has only elastic scatterers that provide the same momentum relaxation
and phase relaxation as the real sample but do not provide any energy re-
laxation; in short, there is no vertical flow. The current, Ir., through this
sample can be calculated using the Landauer—Biittiker formalism. Is Iz
equal to I? There is no unique answer to this question. Let us consider a
few possibilities.

Uniform transmission

There is one relatively simple situation where fgL is clearly equal to 1.
Suppose the transmission function T (E) is independent of energy in the
energy range where transport takes place, that is over the range

th +(afew ksT) > E > u, —(a few ksT)

Then vertical flow has absolutely no effect on the resistance since all
energy channels conduct equally well. We might as well lump them con-
ceptually into a single channel as we were doing earlier in this chapter.
Any vertical flow causes ‘internal’ transfers within this channel which has
no effect on the current flow. This can be seen from Eq.(2.7.2). If we inte-
grate over all energy then the term involving the vertical currents
vanishes (making use of Eq.(2.6.12))

J[Too(E)/ Ro(E)|in(E)EE = [T, / R | o (E)IE =0

so that we can obtain accurate results without including vertical flow
(e = I). Note, however, that this is only true for the net current and not
the energy distribution of the current. We need the detailed energy distri-
bution of the current in order to calculate things like the heat dissipated
inside the conductor:

Heat dissipated ~ f Ei,(E)dE

Obviously we cannot calculate such quantities without doing justice to
the problem of vertical flow. But usually we are most interested in the
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resistance of the conductor which is determined by the total current and
this can be calculated neglecting vertical flow as long as the transmission
characteristics are uniform over the range of energies where transport
occurs. This transport regime can be described by the criterion

(- p2) +(a few ksT) << & (2.7.3)

where £ (often called the correlation energy) is the energy range over
which the transmission characteristics can be assumed uniform. Zero tem-
perature linear response clearly belongs to this transport regime.

Non-uniform transmission

Next consider a transport regime such that the criterion in Eq.(2.7.3) is nat
satisfied. In many cases /g may still be quite close to the actual current 7,
but not always, as we will illustrate with a few examples.

Consider a conductor whose left hand side conducts well at energy E4
and whose right hand side conducts well at energy Es (Fig. 2.7.2a). The
transmission function at either energy is nearly zero since an electron
cannot transmit across the sample. Hence the current Ig. calculated as-
suming purely elastic transport is approximately zero. But in the real
sample a significant current can flow if the temperature is high enough,
so that there are phonons present to scatter electrons inelastically from E,
to Eg. We can use a simple analogy to visualize this (see article by R
Landauer (1984), in Localization, Interaction and Transport Phenomena,
eds. B. Kramer, Y. Bruynseraede and G. Bergmann, (Springer,
Heidelberg)). Suppose we replace the energy coordinate E in Fig, 2.7.2a

@

(b) Analogy with two-
Conductor d1mens1onal flow

Fig. 2.7.2 (a) A conductor whose left hand side conducts well at energy E 4 and whose

right hand side conducts well at energy Eg. In this case Jg ~ 0, but a non-zero current

can flow in the real sample if phonons are present to take electrons from E4 to Ep.
(b) Analogy with two-dimensional flow.
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by the transverse coordinate y as shown in Fig. 2.7.2b. Neglecting inelas-
tic scattering is analogous to isolating the upper channel from the lower
channel so that there is no transverse flow (analogous to the vertical flow
in Fig. 2.7.2a). There would then be no current flow from left to right.

The above example involves the flow of electrons through energy lev-
els that are localized in space. In this regime of ‘strong localization’ ver-
tical flow can lead to a significant increase in the current over what we
would expect if we were to neglect inelastic transitions. However, even
when such strong localization is not involved, inelastic transitions can
lead to a small increase in the current which may or may not be experi-
mentally observable. Consider the current flow across a simple potential
barrier as shown in Fig. 2.7.3. Below the barrier T(E) = 0 while above the

—_—x

Analogy with two-
-  »x dimensional flow

Fig. 2.7.3 (a) Transport of electrons over a potential barrier. (b) Analogy with two-
dimensional flow: the actual conductance is a little smaller if we prevent transverse
flow from occurring on either side of the obstacle.

barrier T(E) ~ 1. If we assume that electrons remain in the same energy
channel as they cross the barrier, then the current is entirely due to the
electrons in the tail of the Fermi function that start out with enough en-
ergy to cross the barrier. This is the standard thermionic emission theory.
But the real current will be a little larger because electrons to the left of
the barrier can absorb energy from the lattice (through inelastic pro-
cesses) and rise to higher energies. The increase in current due to this ef-
fect has been observed in numerical simulations based on semiclassical
transport (F. Venturi et al. (1991), IEEE Trans. ED-38, 611) as well as
quantum transport (R. Lake and S. Datta (1992), Phys. Rev. B, 46, 4757).
It can be understood using an analogy with two-dimensional flow similar
to that used in Fig. 2.7.2. The actual conductance of the structure in Fig.
2.7.3b will be a little smaller if we prevent transverse flow from occurring
on either side of the obstacle.
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Interestingly, the region to the left of the barrier would actually be
cooled by the flow of current. This effect is analogous to the Peltier effect
in macroscopic junctions made of dissimilar materials which is used to
make thermoelectric coolers. Mesoscopic systems can be viewed as
numerous junctions between microscopically dissimilar materials leading
to Peltier-like effects. The heat exchanged with the reservoirs is thus
partially reversible.

In summary, the basic point we are trying to make is that the
Landauer—Biittiker formalism should be used with caution when the
transmission functions vary widely over the energy range where transport
occurs. Inelastic processes can then cause a significant amount of vertical
flow among different energy channels and it can be quite inaccurate to
replace the real problem with the idealized one as suggested in Fig, 2.7.1.

‘Equilibrium current’

We end this section with an interesting aside not directly related to the
rest of our discussion. We have seen that the conductance is given by
(fo(E): equilibrium Fermi function)

fT(E)[ «9fo(E)]

2.7.4)
hk T fT(E)fo(E)[l fo(B)]dE
We could rewrite this in the form
_ |elleq
G-= T 217.5)
where I, is defined as
2 —
Iq= % fT(E) fE)1- fu(E)]dE (2.7.6)

We can interpret I.q as the current that ‘flows’ at equilibrium from con-
tact 1 to contact 2 when the two are shorted together as shown in Fig.
2.7.4. 1t is of course balanced by an equal and opposite flow from 2 to 1.
The conductance expression in Eq.(2.7.4) is only valid if we neglect ver-
tical flow. But Eq.(2.7.5) seems to be valid quite generally even when
vertical flow plays a significant role. Consider for example the conductor
shown in Fig. 2.7.2 whose left hand side conducts well at Eo and whose
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Fig. 2.7.4. A shorted conductor has ‘equilibrium currents’ I, flowing in either
direction that give rise to the equilibrium noise.

right hand side conducts well at Ez. As we mentioned earlier the conduc-
tance of this sample can be significantly enhanced by the presence of in-
elastic processes. This is just what we might expect from Eq.(2.7.5), since
inelastic processes would cause electrons to cross over from one side of
the conductor to the other leading to equilibrium current fluctuations. The
point is that in any conductor there are current fluctuations I, in both
directions which balance out on the average at equilibrium. A small bias
Au increases the flow in one direction to I.q + Al such that

ﬂ-ﬂ = G= Al _|e|qu
Icq ksT Au/|e| kT

This result seems to be quite general. Another example of this is a p—n
junction diode where the current—voltage characteristics are given by

eV dr | e|leq
I=lgexp[ <2 )-1] = 6=[L] -
°q|: Xp(kBT) ] [dv]v=0 kBT

From a practical point of view this relation between G and I.; could be
useful if there is a simple way to calculate I, in the presence of vertical
flow.

Eq.(2.7.5) suggests an interesting relationship between the Landauer
formula and the Nyquist-Johnson formula which relates the conductance
to the correlation function for the equilibrium noise current:

G= 2—1;7 j: j(l(to +0)l(t0)),, dt (2.7.7)

The angle-brackets denote averaging over many values of #, or equiva-
lently, averaging over many identical conductors (see, for example, A.
van der Ziel (1978), Noise in Solid State Devices, Advances in Electronics
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and Electron Physics, vol. 46, (New York, Academic Press)). Eqs.(2.7.5)
and (2.7.7) are consistent only if

J.:(I(to +0)(to)),, dt = 2| e|I.q

which seems reasonable if we view the equilibrium noise as the shot
noise due to independent uncorrelated equilibrium currents /., flowing in
either direction. A proper theory of equilibrium and non-equilibrium noise,
however, involves more subtle considerations (see, for example, R.
Landauer and T. Martin (1992), Phys. Rev. B, 45, 1742 and M. Biittiker
(1992), Phys. Rev. B, 46, 12845).

Summary

The basic results of the Landauer-Biittiker formalism are summarized
here for convenience:

I, = [i,(EXE where ip(E)~ Eh‘i 3 Lo BN fo(E) - fuB)] 25.7)

Here f,(E) is the Fermi function for terminal p

fp(E)=[exp(£k‘—;‘£)+1]_l

B

and T,,(E) represents the total transmission (average transmission proba-
bility per mode times the number of modes in the leads) from lead g to
lead p at the energy E. The transmission function obeys the sum rule

2 qu(E) = 2 qu(E)

If the bias is small such that (g£.: energy range over which the transmis-
sion function is nearly constant)

Au << g +(a few kgT)

then we can linearize Eq.(2.5.7) to obtain (V, = y,/e)

I, = 2 Goa Vo - Va] (2.5.8)
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with Gpe = % | T,,,,(E)(- %fE“—)dE (2.5.9a)

where fo(E) is the equilibrium Fermi function. At low temperatures
(ksT << &),

2
Gra = % To(Er) (2.5.9b)

The Landauer—Biittiker formalism provides a rigorous framework for the
description of mesoscopic transport as long as transport across the con-
ductor is coherent. As we will see in Chapter 3, it is then straightforward
to calculate the transmission functions from the Schrédinger equation. For
non-coherent transport too the formulation is valid as long as transport
through the conductor does not involve the vertical flow of electrons from
one energy to another. The transmission functions can then be calculated
using phenomenological approaches. If coherent effects can be neglected
altogether then the transmission functions can be evaluated using a semi-
classical approach.

But if vertical flow is present then the transmission functions are af-
fected in a complicated way by the exclusion principle (in degenerate
systems), thus severely limiting the utility of this formalism. Luckily,
even if vertical flow is present it can be neglected (because it has no ef-
fect on the total current) if the transmission functions are approximately
constant over the energy range where transport occurs:

(1 — o) +(afew ksT) << &,

If this criterion is not satisfied then vertical flow may or may not have a
significant effect on the current and the formalism should be used with
caution.

Despite this limitation with respect to vertical flow, the Landauer—
Biittiker formalism has a wide range of applicability. In the quantum Hall
regime (see Chapter 4) the transmission functions are uniform over large
ranges of energy so that vertical flow can be ignored. Localization
phenomena (Chapter 5) are significantly affected by phase-breaking
processes, but these are accounted for fairly well using simple phenom-
enological approaches that neglect vertical flow. Transport in the regime
of strong localization, however, cannot be described without doing justice
to the problem of vertical flow (see Fig. 2.7.2). Double-barrier tunneling
(Chapter 6) is generally unaffected by phase-breaking processes though
as we will see, the valley current cannot be understood without a proper
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description of vertical flow. Indeed in Chapter 8 we will use this example
to illustrate the application of the non-equilibrium Green’s function for-
malism which provides a general framework for the description of quan-
tum transport with or without vertical flow. The price one pays for this
generality is the increased conceptual complexity. What is particularly
attractive about the Landauer—Biittiker formalism is that it allows one to
handle a complex topic like quantum magnetotransport in degenerate
conductors, armed with little more than elementary quantum mechanics.
The only limitation is that there seems to be no way to include vertical
flow without compromising its endearing simplicity.

Exercises

E.2.1 In Section 2.1 we calculated the contact resistance when a narrow
conductor with M modes is connected to two very wide contacts. If the
number of modes in the contacts is not infinite, but some finite number,
N, then the left-moving and right-moving carriers inside the contacts

By
I"
Applied
bias
I‘”
By
Contact m Contact
(N modes) M m oders) (N modes)

Fig. E.2.1, Spatial variation of the electrochemical potential for a ballistic conductor
with M modes connected between two contacts having a finite number of modes (V).

have different electrochemical potentials as shown in Fig. E.2.1. Show
that the contact resistance taking this into account is given by

AT
2¢*|M N

Assume reflectionless contacts as in the text. For further discussions on
the nature of the contact resistance at different types of interfaces see R.
Landauer (1989), J. Phys. Cond. Matter, 1, 8099 and M. C. Payne (1989),
J. Phys. Cond. Matter, 1, 4931.
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E.2.2 Fig. 2.1.2 in the text shows the variation in the conductance as the
width of a ballistic conductor is reduced. How will the conductance vary
if the width is held constant and the magnetic field is increased? See
Exercise E.1.4 regarding the variation in the number of modes as a func-
tion of the magnetic field. For experimental results, see van Wees et al.
(1988), Phys. Rev. B, 38, 3625.

E23
@ 4
1 3
2
© v T T T T T

. -05 0 05
Magnetic field (T) Magnetic field (T)

Fig. E.2.3. Cross junction: (a) Structure, (b) T vs. B, (¢) T. vs. B and (d) Tr vs. B.
Adapted with permission from K. L. Shepard, M. L. Roukes and B. P. van der Gaag
(1992), Phys. Rev. B, 46, 9648.

Consider a cross junction as shown in Fig. E.2.3. Assuming that the four
ports are completely symmetric, we can define a coefficient for forward
transmission, one for right turning and one for left turning as follows:
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Li=Ty=To=Tu=Tr
Tm =Tsz =ﬁ3=T}4 = Tx
I_:il =I_i2 -TZS "I_;M ETL
We have reproduced the measured values of Ty, 71 and Tr as a function
of the magnetic field from Phys. Rev. B, 46, 9653—4 (1992). See this refer-
ence for a description of how the transmission functions are measured.
(a) Suppose we measure the Hall resistance Ry by running a current from
1 to 3 and measuring the voltage between 2 and 4. Show that
h R-T
26" (i + L) + B +25:(Tr + Ty + 1))

Ry

(b) Use the data provided above to calculate Ry vs. B numerically from
the relation derived in part (a).

| I | I j
1 3
e I 2 l )

]t
II

E24

Fig. E.2.4. Terminals 1 and 3 are connected through two narrow apertures in series.

We would expect the conductance of two apertures in series to be half
that of a single aperture: G = M(2¢/h)x0.5. But if the two apertures are
sufficiently close together then the electrons emerging from one aperture
do not have the chance to spread out before they reach the second aper-
ture. Consequently the conductance is the same as that of a single aper-
ture: G = M(2¢%/h). But if we turn on a magnetic field then the electrons
get deflected and the conductance is reduced (see A. A. M. Staring et al.
(1990), Phys. Rev. B, 41, 8461). Use the Biittiker formula to show that the
conductance is given by (see C. W. J. Beenakker and H. van Houten
(1989), Phys. Rev. B, 39, 10445)
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(Tr-T)

G=(/m)\M+T:+
2T'F +TR +TL

T:=Ty =Ty
To=Tu=Tk
D=L =Ts=Tu=T
Li=T:=Ts=Tu=T

where

E.2.5 Coherent inelastic transport In this book we will generally restrict
ourselves to steady-state transport in the presence of a d.c. bias. However,
it is interesting to note that if an alternating field is present within the
conductor (but not inside the contacts) then we can define scattering
states just like those in Eq.(2.6.3) but with different energies all coupled
together. A scattering state (g,F) now consists of an incident wave with
energy E in lead g, together with scattered waves with energy E,
(= E £ nhw, n being an integer) in every lead p (cf. Eq.(2.6.3)):

W,(q) = 8, exp[ +ikx, |exp[-iEt/ k]
+2 Spq (E,.,E)exp[—ik,,x,,]exp[—iE,,t/h]

pn

Proceeding as before derive the following expression for the d.c. current:
2e p
I == [[H®- ;Tm(En,E)zz(E)]dE

The point is that there is no reason to include any exclusion principle-
related factors in the expression for the current even if transport is
inelastic, as long as it is coherent. But if there are phase-breaking
processes within the conductor then we cannot define coherent scattering
states that extend from one lead to another and the scattering state
argument cannot be used.

E.2.6 Show that the following orthogonality relation
ak+k
f [Xm,k ((—22 + eBy) X ]dy =8

is satisfied by two functions ¥,, (v) and %, , () satisfying Eq.(1.6.3)
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C ken o .
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which are appropriately normalized.

E.2.7 Starting from the current expression
2e p—
I-2- fT(E)[ F(E) - f(E)]dE (see Eq.(2.5.1))

derive the result stated in Egs.(2.5.4)+(2.5.6) (see P. F. Bagwell and T. P.
Orlando (1989), Phys. Rev. B, 40, 1456).
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In Chapter 2 we have tried to establish that there exists a useful quantity
called the transmission function in terms of which one can describe the
current flow through a conductor. In this chapter we address the question
of how the transmission function can be calculated for actual mesoscopic
conductors. As we might expect, this chapter is somewhat mathematical
and familiarity with matrix algebra is required. It could be skipped on first
reading since it is not essential to know how to calculate the transmission
function in order to appreciate mesoscopic phenomena, just as it is not
necessary to understand the microscopic theory of diffusion or mobility in
order to appreciate bulk transport phenomena. However, we will occa-
sionally (especially in Chapter 5) use some of the concepts introduced
here.

If the size of the conductor is much smaller than the phase-relaxation
length then transport is said to be coherent and one can calculate the
transmission function starting from the Schrodinger equation. A large
majority of the theoretical work in this field is centered around this
coherent transport regime where we can relate the transmission function
to the S-matrix as discussed in Section 3.1.
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When dealing with a large conductor it is often convenient to divide it
conceptually into several sections whose S-matrices are determined indi-
vidually. We discuss in Section 3.2 how the S-matrices of successive
sections can be combined assuming complete coherence, complete
incoherence or partial coherence among the sections. This is important
because it affords a simple way to calculate the transmission function for
a partially coherent conductor. For example, we could divide up the
sample conceptually into little segments whose dimensions are of the
order of a phase-relaxation length. The S-matrix for an individual segment
is calculated assuming transport to be coherent within the segment.
Different segments are then combined incoherently. Phenomenological
approaches like this can often provide a satisfactory description of non-
coherent transport without the use of advanced concepts that are needed
for a proper microscopic theory of non-coherent transport (Chapter 8).

The Green’s function G®(r,r") can be viewed as a generalized S-matrix
that allows us to describe the reponse at any point r due to an excitation
at point r'. This concept is really not essential for describing coherent
transport but it provides a convenient method for calculating the S-matrix
of arbitrarily shaped conductors. Besides it is helpful in relating the scat-
tering theory to other formalisms. For this reason we introduce the
concept of Green’s functions in Section 3.3 and relate it to the S-matrix in
Section 3.4. In Section 3.5 we show that a conductor connected to infinite
leads can be replaced by a finite conductor with the effect of the leads
incorporated through a ‘self-energy’ function. This provides a convenient
method for evaluating the Green’s function (and hence the transmission
function) numerically. At the same time it serves to introduce the impor-
tant concepts of self-energy and spectral function in a relatively simple
context (Section 3.6).

This expression for the transmission function in terms of the Green’s
function and the self-energy also serves to relate the results of scattering
theory to the results obtained from the Kubo formalism and from the trans-
fer Hamiltonian formalism, both of which are widely used in the literature
(Section 3.7). We will also use it later in Chapter 8 to relate to the non-
equilibrium Green’s function formalism, which is gaining increasing popu-
larity in the field of mesoscopic transport.

We end this chapter with a discussion of the concept of Feynman paths
(Section 3.8) which allows us to visualize the Green’s function as a sum
over an infinite number of paths connecting the initial and final states.
This viewpoint is often useful in understanding the underlying physics



3.1 Transmission function and S-matrix 119

which would otherwise be buried in the algebra. The Aharonov—-Bohm
effect is used as an illustration.

3.1 Transmission function and the S-matrix

In Chapter 2 we have seen how the current can be expressed in terms of
the transmission function (see Eq.(2.5.7)). In this section we will discuss
the relationship between the transmission function and the scattering
matrix (or in short, the S-matrix) for coherent conductors. A coherent
conductor can be characterized at each energy by an S-matrix that relates
the outgoing wave amplitudes to the incoming wave amplitudes at the
different leads. To be specific, if there is a total of three modes in the
leads as shown in Fig. 3.1.1, we can write

b S Sz Sz f/an
b2 =18 Sn Sulla
b §31 832 S:3 |\a43

At any given energy E, we will denote the number of propagating modes
at lead p by M,(E). The total number of modes is obtained by summing
the number of modes in each lead

M(E) = Y M,(E)

The scattering matrix is of dimensions Mt x Mr.
In principle we can calculate the S-matrix starting from the (effective
mass) Schrédinger equation (see Eq.(1.2.2))

a; —»
- >
by COHERENT b;
CONDUCTOR
a —» <+—g,
4+ b
CONTACT / OONTACT
LEAD WITH ONE
PROPAGATING MODE
LEAD WITH TWO oD
PROPAGATING MODES

Fig. 3.1.1. A coherent device can be characterized by a scattering matrix at each
energy. The scattering matrix relates the outgoing mode amplitudes b to the incoming
mode amplitudes a.



120 Transmission function, S-matrix, Green’s functions

E,+

(i"VT*eA)._ + U5, ) [W(x,y) = E¥(x,)

if we know the vector potential A and the potential energy U(x,y) inside
the conductor. in the following sections we will discuss how the S-matrix
can be calculated for specific structures. However, these details are not
important for the moment. The main point is that for a coherent conductor
one can define and (if necessary) compute an S-matrix.

The transmission probability T.. is obtained by taking the squared
magnitude of the corresponding element of the S-matrix:

Tnen = Smen || (3.1.1)

We are interested in the transmission function 7,,(E). As we explained in
Section 2.6, this quantity is obtained by summing the transmission proba-
bility T, over all modes m in lead ¢ and all modes = in lead p:

Ta= Y Y T (3.1.2)

meEq nep

We have inserted the arrows in the subscripts just as a reminder that the
direction of propagation is backwards from the second subscript to the
first one. We will generally write the subscripts without the arrows.

Unitarity

We will now show that in order to ensure current conservation the
S-matrix must be unitary. We can write in matrix notation

{6} =[sNa}

where the matrix [S] has dimensions Mt x Mt, Mt being the total number
of modes in all the leads, while {a} and {b} are column vectors repre-
senting the incoming and outgoing wave amplitudes in the different
modes in the leads. We assume that the incoming and outgoing currents
in a particular mode m are proportional to the squared magnitudes of the
corresponding mode amplitudes a» and b. respectively. Current conserva-
tion then requires that (the superscript ‘+’ denotes conjugate transpose)

Z|am = 2 [bn [
that is, {a}*{a} = {B}" {B}
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Since {b} =[SKa}
we can writt  {a}*{a} = {Sa}" {Sa} = {a}'[ST[S}{a}

Hence [ST[S]=1=[S][sT (3.1.3a)

so that in terms of the elements of the S-matrix we have

Mr Mr

N lsm [ =1= 2|s,.,,. i (3.1.3b)

mel

The first of these relations is obvious since the left-hand side represents
the sum of the transmission probabilities for a given input mode n over all
possible output modes m. This sum must equal one since the electron
must go somewhere, or in other words, current must be conserved. But the
second relation is not as obvious. Here we are summing the transmission
probabilities over all possible inputs (for a fixed output). There seems to
be no simple reason why this should equal one. However, as we can see,
both the results follow from the unitarity of the S-matrix which is essential
for current conservation.

An important point
An important point to note is that the current associated with a scattered
wave is proportional to the square of the wavefunction multiplied by the
velocity. For this reason, it is customary to define the S-matrix in terms of
the ‘current amplitude’ which is equal to the wave amplitude times the
square root of the velocity. Instead we could define a matrix [s'] in terms
of the wave amplitudes so that

S am = \/Vm [ Va Sum 3.14)

But the matrix [s'] is not unitary, unlike the matrix [s]. We can no longer
invoke current conservation to write {a}*{a} = {b}*{b} (a: incoming
wave amplitude, b: outgoing wave amplitude) as we did in proving that
the S-matrix must be unitary.
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Sum rules

Using Eqgs.(3.1.3) it is easy to see that
My

p mm=1

My
T, = Tim= Y1=M
2 a an mE-I HZP i

Hence the following sum rule is always satisfied by the transmission func-
tion:

D Tu(E) = Y Tu(E) = My(E) (3.1.5)

where M,(E) is the number of modes in lead p.

For a device with N leads we can write down the transmission function
T,,(E) in the form of an N x N matrix. Assuming N =3 (to be specific)
we have a 3 x 3 matrix:

(E): g=1 g=2 q=3

=1 XX XX xx SUM=M,
=2 XX XX xx SUM=M,
3 XX XX xx SUM-=M,
M= M, M, M;

En v w3
H

The sum rules require that the elements in each row and each column add
up to equal the number of modes for that terminal.

It is interesting to note that the sum rules imply that for two-terminal
devices the transmission function is always reciprocal, even if a magnetic
field is present; that is, T;; = T;. To see this, consider a two-terminal de-
vice

Tq(E): q=1 q=2
p=1 xx xx SUM=M,
rPr=2 xx xx SUM=M,
SUM= M, M,

Since T, +Ti; =M, =T;, + T; we must have T, = T;;.
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Sum rule for the conductance matrix

Using the definition for the conductance in terms of the transmission (see
Eq.(2.5.92)) we can obtain the following sum rule for the conductance
matrix:

;GM = ;G.,,, = %_[M,(E)(—gf-E"—jdE

2
= 2% M, (E;) at low temperatures

(3.1.6)

Thus for coherent transport, the unitarity of the S-matrix ensures that the
sum rule for the conductance matrix (see Eq.(2.4.3)) is satisfied.

Reciprocity
We will now show that for coherent transport, the symmetry properties of
the S-matrix ensure that the reciprocity relation (Eq.(2.4.5)) is satisfied.
The basic property of the S-matrix that we will use is that reversing the
magnetic field transposes (denoted by the superscript ‘t’) the S-matrix

[5].5 -[S‘]_B thatis, [sm],; =[swm ], (3.1.7)

To prove this, suppose we have solved the Schrddinger equation (see

Eq.(1.2.2))

(irV + eA)2

E,
* 2m

+U(x,y) |W(x,y) = E¥(x,y) (3.1.8a)

to obtain the S-matrix connecting the outgoing amplitudes {b} to the in-
coming amplitudes {a} (see Fig. 3.1.1). If we take the complex conjugate
of Eq.(3.1.8a)

(-ihV + eA)’

E; +
2m

+U(x,y)]w*(x,y)=w*(x,y)

and at the same time, reverse the vector potential A (and hence the mag-
netic field B), we obtain

E. W(,y)=E¥ (r,y)  (3.1.8b)

. 2
+@%:A+U(x,y)
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The differential operators appearing in Eqs.(3.1.8a) and (3.1.8b) are iden-
tical. This means that

-B

[ con] ~[wesnl.a

Or in other words, if we know the solutions to the Schrodinger equation in
a magnetic field +B, we can obtain a solution that is valid for —B simply
by taking its complex conjugate. Taking the complex conjugate, however,
turns an incoming wave into an outgoing wave and vice versa. So if

{b} =[S],,{a} thatis {b*} - [S*L {a*}

then we must have

{a*} =[5], {b*} that is {b*} - [S"]_B{a*}

Hence [S*]w - [S"]_B
But [S"]_B -[S*]_B (Unitarity, see Eq.(3.1.3a))
Hence [S*]w - [S+]—B = [S]+B -[ t]-19

as stated above (see Eq.(3.1.7)).
Next we take the squared magnitude of both sides of Eq.(3.1.7) and sum
over all modes m in lead p and over all modes 7 in lead g to obtain

lsmlp= Xlsml,

mep,neq mep,neq
Using Eq.(3.1.1), (L], = [T ],
Hence, using Eq.(2.5.9a), [G,,q ]+ 2= [G.,IJ ]_ 5

which is the desired result. It should be mentioned that this property of
reciprocity holds only for small bias, unlike the sum rules discussed in the
last section which hold irrespective of the bias. The reason is that in order
to prove Eq.(3.1.7) we need to assume that the electrostatic potential
U(x,y) inside the conductor remains unchanged when we reverse the
magnetic field. This is clearly not true for large bias since the Hall
voltage reverses when the magnetic field reverses. But for an infini-
tesimally small bias the electrostatic potential inside the conductor is
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essentially the same as that at equilibrium and it can be shown that the
potential distribution U(x,y) is unchanged when the B-field is reversed.

A reminder

We have argued earlier (see Fig. 2.2.2) that although the relation
G =(2e*/h)T gives the conductance measured between two planes ‘1’
and 2’ inside the contacts, we do not need to evaluate the transmission
function T (or the S-matrix) between the contacts. We can get the same
answer (and save ourselves a lot of work) by evaluating the S-matrix
between two planes ‘1L’ and ‘2L’ located in the leads, as long as the
lead—contact interface is reflectionless. In this chapter we will often not
draw the contacts explicitly since our focus is on the problem of
calculating the S-matrix relating the wave amplitudes in different leads. It
is important to note that we are calculating the transmission function
between two leads, though the relation G =(2¢*/h)T gives the
conductance between two contacts (see Fig. 3.1.1).

3.2 Combining S-matrices

Consider a four-terminal Hall bridge as shown in Fig. 3.2.1. We could in
principle evaluate the overall S-matrix by directly solving the Schrédinger
equation using the formulation to be described in the following sections.
In practice, however, it is difficult to handle conductors whose dimen-
sions exceed a few tens of wavelengths because of the size of the matrix
that needs to be inverted. One solution to this problem is to divide the
conductor into two (or more) sections as shown in Fig. 3.2.1, compute the
individual S-matrices [s®] and [s®] and then combine them to obtain the
composite S-matrix.

s=sO@s?

Lead 3 b 5 Lead 4

—»
ey b,
— —>
Lead 1 s 5 s@ Lead 2
- +—
b, e,

<__._._

és

Fig. 3.2.1. A long structure can be divided into two parts whose S-matrices s and s©
can be combined to yield the overall S-matrix.
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We will now describe the rules for combining S-matrices; that is, the
meaning of the symbol ®.
Let us write the individual S-matrices in the form

bis r® @Y ra as r®  ¢@(bs
{bs }= [t(l) r'(l)Has } and {bu} B [t(z) r'(z)Han}

where {a;3} is a column vector representing the incoming wave ampli-
tudes in all the various modes in terminals ‘1’ and ‘3’, {b13} is a column
vector representing the outgoing wave amplitudes in all the various
modes in terminals ‘1’ and ‘3’, etc. The matrices [r] and [r'] describe the
reflection amplitudes while the matrices [¢] and [¢'] describe the transmis-
sion amplitudes; the subscripts 1 and 2 refer to the two sections respec-
tively. Note that at terminal ‘5’, the incoming amplitude {as} for the first
section is the same as the outgoing amplitude for the second section.

It is straightforward to eliminate as and bs from the above equations to
obtain the S-matrix for the composite structure:

i

-1 -1
(= t<2>[ [-r'® r<2>] (D = r® oy p® r(2>[ [—pr® r<2>] pLey

L =t'(l)[I—r(z)r'(l)]_lt'(z), Flepr®y t(z)[l—r"‘) r(2>]“rv<x> r@

(3.2.1)

Feynman paths

We can get some insight into this result by expanding the expressions in
Eq.(3.2.1) in a geometric series as follows:

-1
f= t<2>[ [-r® r<2>] P

=@ t(2>[rv<x> r<2>] POan ,<2>[rv<1> r(2>][rv<1) r<2>] PO

The successive terms in this series have a simple physical interpretation
(see Fig. 3.2.2). The first term is the amplitude for transmission through
the two obstacles without any reflection, the second term for transmission
with two reflections, the third term for transmission with four reflections
and so on.
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Fig. 3.2.2. Two obstacles with scattering matrices as shown are placed in series. The
problem is to find the S-matrix of the composite structure.

Consider now the element (m,n) of one of these terms (note that the
quantities ¢ and r are all matrices)

(,(2>[rv<1) r<2>] t(l))m - ; Z, Z (,(2> )mm(rva))mm(ra))mm(,(x))m

We could depict each term in this summation by a ‘Feynman path’ as
shown in Fig. 3.2.3. A path starts out in mode »n, transmits to mode m;,

Fig. 3.2.3. A typical Feynman path leading from an input mode n to an output
mode m.

reflects to mode m,, reflects again to mode m3 and then transmits to mode
m.

The overall transmission amplitude from mode n to mode m can be
expressed as

®),, = 2 Ap, P Eall paths starting in mode n on the left
5 (3.22)

and ending in mode m on the right

where Ap is the amplitude associated with a particular path. As a practi-
cal computational tool this viewpoint may not be very useful because the
number of paths involved is enormous and the phase of A, often changes
quite rapidly from one path to the next. But it provides a very appealing
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conceptual picture that is often useful in ‘understanding’ the physics
which would otherwise be buried in the algebra of S-matrices.

Combining successive sections incoherently

For coherent transport we can combine the S-matrices of individual sec-
tions as described above. The transmission probability is obtained by
squaring the transmission amplitude:

Tm=tm*tm-2Ap*Ap+22Ap*Ap (3.2.3)
P

Pup

The first term represents the sum of the probabilities of all the paths,
while the second term is due to interference among the different paths. If
the length of a section is much greater than the phase-relaxation length
then successive sections could be treated as incoherent, This means that
instead of adding the amplitudes of the different paths shown in Fig. 3.2.2
we should add their probabilities; that is, we should ignore the second
term in Eq.(3.2.3).

The simplest way to do this is to calculate the transmission probability
by combining probability matrices instead of S-matrices; that is, instead
of s=5 ®s; we calculate §=58 ®S, where the probability matrix S is
obtained simply by squaring the corresponding elements of the amplitude
matrix s:

S(m, n) = | s(m,n)*

Recently this approach has been used to describe semiclassical transport
in electronic devices (see M. A. Alam et al. (1993), Solid State
Electronics, 36, 263). In device applications one is often interested in
non-degenerate systems so that even vertical flow is readily included in
this approach. Degenerate systems too can be handled straightforwardly
using an iterative approach since quantum interference effects are absent.

One can gain insight into the effect of quantum interference by compar-
ing the results obtained by combining successive scatterers coherently
and incoherently (see, for example, the results shown in Fig. 5.2.1). These
two methods for combining S-matrices are easily appreciated with a sim-
ple example involving two scatterers in a single-moded conductor whose

S-matrices are given by
n t
] and s; = [

n t
8§ =
L r L r

[ S
[ EER—— |

[
1
'
1
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Since we are considering just one mode, the quantities r, ¢ etc. are just
numbers and not matrices. The probability matrices are given by

S R T 48 R T
"[n Rl] B F Rz]

Tielaf =6 Ro=[nf =il T+R=1

where
Lelaf =6 Re=[nf=|nf Be+R=1

If we wish to combine the scatterers coherently then we should combine
the individual amplitude matrices to obtain the composite transmission
amplitude (according to the rules given in Eq.(3.2.1))
Lt
1-rin

Squaring we obtain the transmission probability:

LT
1- 2\/ RR; cos8 + RiR;

T=|tf (coherent) (3.2.4)
where 8 is the phase shift acquired in one round-trip between the scatter-
ers: 6 = phase(r] ) + phase(r:).

If we wish to combine the scatterers incoherently then we should
combine the individual probability matrices to obtain the composite
transmission probability (according to the same rules):

T =LT2R;— (incoherent) 3.25)

1-RR;

This result is independent of the phase & as we would expect.

Combining successive sections with partial coherence

We have seen how successive sections can be combined coherently or
incoherently depending on whether we combine the amplitude or the
probability matrices. But can we combine two sections with partial co-
herence? One simple way to achieve this is to interpose a voltage probe
between two scatterers as explained earlier (see Fig. 2.6.2). As shown in
Fig. 3.2.4, a fraction of the electrons travel coherently from terminal ‘1’ to
‘2’. The remainder travel coherently from terminal ‘1’ to the probe ‘P’, are
reinjected after phase-randomization and then reach terminal ‘2°. The
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Hp

] }
1 4 T, t,
t1 r; t !

Fig. 3.2.4. A conceptual voltage probe introduced between two scatterers to
simulate the effects of phase-breaking. Unfortunately this also introduces
momentum relaxation.

electron flux reaching terminal ‘2’ thus has a coherent component and an
incoherent component.

One difficulty with this arrangement is that the probe introduces an ad-
ditional resistance. This is because the electrons reinjected from the
probe have equal probability of going to the left or to the right. The probe
thus randomizes the momentum as well as the phase. It would be much
better if we could adjust the two effects independently since it is well-
known experimentally that the phase-relaxation time and the momentum
relaxation time can be very different at low temperatures (see Section
1.3). We can introduce phase-relaxation without introducing any momen-
tum randomization by using a pair of unidirectional probes as shown in
Fig. 3.2.5. An electron coming in at ‘A’ has a certain probability of going
onto ‘B’ and a certain probability of being deflected into ‘P1’. If it goes
into ‘P1’, it is reinjected after its phase has been randomized. When it is
reinjected it can go on to ‘B’ but not back to ‘A’. Thus the probe pre-
serves the sense of current flow so that momentum is not relaxed though
phase is randomized. The same is true of the other probe (P2).

The S-matrix for this twin probe configuration can be expressed in
terms of a single parameter a (M. Biittiker (1988), IBM J. Res. Dev., 32,
72):

m= A B P1 P2

n=A 0 1-a 0 o

n=B Jl-a 0 o 0 (3.2.6)
n=Pl Ja 0 1-a 0

n=P2 0 Ja 0 1-a

where we have assumed each lead to be single-moded. The degree of
phase-breaking can be adjusted through the parameter o which is a num-
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Fig. 3.2.5. By using a pair of unidirectional probes, we can introduce phase-relaxation
without introducing momentum relaxation.

ber between 0 and 1. Note that all the elements are purely real numbers
and that we have chosen the signs of the different elements so as to
ensure that the matrix is unitary (this is essential to ensure current con-
servation).

The structure in Fig. 3.2.5 has to be treated as a four-terminal conductor
whose conductance is obtained from the Biittiker formula (see Eq.(2.5.8))
by setting the currents at the floating probes to zero. To use Eq.(2.5.8) we
first need to combine the individual scattering matrices to obtain a
(4 x 4) scattering matrix relating the terminal quantities at the four ter-
minals 1, 2, P1 and P2. In principle, the procedure is quite straightfor-
ward. We have one S-matrix relating terminal quantities at ‘1’ and at ‘A’,
one relating terminals ‘B’ and ‘2’ and one relating ‘A’, ‘B’, ‘P1” and ‘P2’.
We can eliminate the internal terminals ‘A’ and ‘B’ using straightforward
algebra to obtain our desired S-matrix for the composite four-terminal
structure. Alternatively we can enumerate all the ‘Feynman paths’ be-
tween each pair of terminals and add up their amplitudes.

This approach of simulating the effects of phase-breaking with floating
probes provides a rather simple method for modeling partially coherent
transport using the Landauer—Biittiker formalism and has been used by
other authors since the initial work of Biittiker (see for example J. L.
D’Amato and H. M. Pastawski (1990), Phys. Rev. B, 41, 7411 and K.
Maschke and M. Schreiber (1994), Phys. Rev. B, 49, 2295). Although the
approach appears to be purely phenomenological, we will see in Section
8.7 that it can be justified from a detailed microscopic theory with appro-
priate approximations (see also M. J. McLennan et al. (1991), Phys. Rev.
B, 43, 13846 and S. Hershfield (1991). Phys. Rev. B, 43, 11586). In a
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microscopic theory, electron—phonon and electron—electron interactions
are usually described by a ‘self-energy function’. Later in this chapter we
will show that the effect of a lead too can be described by a self-energy
function, suggesting that the similarity between leads and real
interactions is more than superficial.

3.3 Green’s functions: a brief introduction

The S-matrix tells us the response at one lead due to an excitation at
another. The Green’s function is a more powerful concept that gives us
the response at any point (inside or outside the conductor) due to an
excitation at any other. For non-interacting transport, the only excitations
we need to worry about are those due to waves incident from the leads.
For such excitations, the Green’s function and the S-matrix are related
concepts and what we use is largely a matter of taste (we will derive
their relationship in Section 3.4). The real power of Green’s functions is
evident when we try to include the effect of interactions (electron—
electron or electron—phonon), as we will do in Chapter 8. Such inter-
actions give rise to excitations within the conductor, and cannot be
described by simple S-matrices.

In this chapter we will restrict our discussion to non-interacting trans-
port. For non-interacting transport, the language of Green’s function is
really not necessary and our main purpose in introducing it is that it pro-
vides a useful practical tool for computing the S-matrix of arbitrarily
shaped conductors (Section 3.5). Besides it is useful in relating the scat-
tering viewpoint to other viewpoints that are widely used in the literature
(Sections 3.6-3.8).

In this section we will briefly summarize some properties of the
Green’s function that we will need for our discussion. The concept of
Green’s functions appears in many physical contexts including circuit
theory, electrostatics and electromagnetics. Whenever the response R is
related to the excitation S by a differential operator D,

DpR=S
we can define a Green’s function and express the response in the form
R=D,S=GS where G=D,

Our problem can be expressed in the form

[E-Hyp W =S
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where W is the wavefunction and § is an equivalent excitation term due
to a wave incident from one of the leads. The corresponding Green’s func-
tion can be written as

G=[E-Hy]" (3:3.1)

where H,, is the Hamiltonian operator (see Eq.(1.2.2), the subband energy
E, has been included as part of the potential U(x,y)):

. 2
. (irV + eA)

H
*® 2m

+U(r) (33.2)

Retarded and advanced Green’s functions

The inverse of a differential operator is not uniquely specified till we
specify the boundary conditions. It is common to define two different
Green’s functions (retarded and advanced) corresponding to two different
boundary conditions. The difference is best appreciated with a simple
example.

Consider a simple one-dimensional wire with a constant potential
energy Up and zero vector potential. From Egs.(3.3.1) and (3.3.2) we can
write

-1

K 4*
G=|E-Upy+——
[ 0+2m¢9x2]

2 2
that is, [E -Up+ ;_m%) G(x,x')=d(x—x") (3.3.3)

This looks just like the Schrodinger equation

K 9*
[E—Uo +E?) "P(X)—O

except for the source term 8(x—x') on the right. We could view the
Green’s function G(x,x') as the wavefunction at x resulting from a unit
excitation applied at x'. Physically we expect such an excitation to give
rise to two waves traveling outwards from the point of excitation, with
amplitudes A* and A™ as shown in Fig. 3.3.1.
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AT — * —» At

x=x —_— x
Fig. 3.3.1. Retarded Green’s function for an infinite 1-D wire.

We can write
G(x,x)= A" exp[ik(x - x')], x>x
3.3.4
G(x,x)=A" exp[—ik(x - x')], x<x ( )
where k = [2m(E - U,)]"*/h. Regardless of what A* and A~ might be, this
solution satisfies Eq.(3.3.3) at all points other than x = x'. In order to sat-
isfy Eq.(3.3.3) at x = x', the Green’s function must be continuous

[6(x,x)]..,. =[G&x)]._,- (3.3.52)

while the derivative must be discontinuous by 2m/A’.
9G(x,x') _[6G(x,x) = 2_’;‘ (3.3.5b)

ox xox'* ox x=x'" h

Substituting for G(x,x") from Eq.(3.3.4) into Eq.(3.3.5), we obtain

A*=A" and ik[A* +A-]=il—’;‘

Hence A*=A"=-— where v= k (3.3.6)
hv m

and the Green’s function is given by
RS SN P
G(x,x) = — exp[1k|x x |]
It is important to note that there is another solution

G(x,x) = + ;li;—exp[—ik| x-x |]

AT —» * A"

x=x —»>x
Fig. 3.3.2. Advanced Green’s function for an infinite 1-D wire.
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which satisfies Eq.(3.3.3) just as well. This solution consists of incoming
waves that disappear at the point of excitation (Fig. 3.3.2) rather than
outgoing waves that originate at the point of excitation (Fig. 3.3.1). The
two solutions are referred to as the advanced Green’s function (G*) and
the retarded Green’s function (G*):

G*(x,x) = —;:—‘;exp[ik|x—x' |] (3.3.7)

N .
and GA(x,x)-+;l—‘;exp[—1k|x—x’ |]

k= 2m(E - Us)

where
h

and v= i3

m
Both these solutions satisfy the same equation (Eq.(3.3.3)) but they corre-
spond to different boundary conditions: the retarded function corresponds
to outgoing waves while the advanced function corresponds to incoming
waves (far away from the source).

The infinitesimal n
One way to incorporate the boundary conditions into the equation itself is
to add an infinitesimal imaginary part to the energy. Instead of Eq.(3.3.3)
we write (1> 0)

hz 32 : R ! '
E—Uo+—2—”—l?+1n G*(x,x)=08(x—x")

for the retarded function. The small imaginary part of the energy intro-
duces a positive imaginary component to the wavenumber.

k,_sz(E+1n-Uo) =\/2m(E—Uo) T

h h E-U,
~ N2m(E = Uo) [1 +—7 ] = k(1 +id)
h 2E - Up)

This imaginary part makes the advanced function grow indefinitely as we
move away from the point of excitation. This makes the retarded function
the only acceptable solution, since a proper solution must be bounded.
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Similarly the advanced function is the only acceptable solution of the
equation (7> 0)

[E—Uo +_712_3_22 —in) GA(x,x)=8(x—x')
2m ox
In general the retarded Green’s function is defined as (cf.Eq.(3.3.1))
G* =[E-Hy +in]" (n—0) (3.3.82)
while the advanced Green’s function is defined as

G* =[E-Hy -in]" (n—0) (3.3.8b)

From hereon we will generally refer to the retarded Green’s function as
just the ‘Green’s function’.

Green’s function for a multi-moded wire
Next let us look at the Green’s function for an infinite multi-moded wire
(Fig. 3.3.3). The Green’s function G*(x,y;x'y") represents the wavefunction

x=x

- +
A — ,V|=,V'. —» 4, Ty

X

Fig. 3.3.3. Green’s function for an infinite multi-moded wire.

at (x,y) due to an excitation at x = x', y = y'. We would expect such an
excitation to give rise to outgoing waves in different modes as shown. We
could write the Green’s function in the form

Grxx)= Y 4; X ) exp[ikn| x - 2 | (3.3.9)

where the A, and A, are the amplitudes of the different modes that
propagate away from the source. The transverse mode wavefunctions,
X.(») satisfy the equation (see Eq.(1.6.3) with B=0)

[—g—mjj’y—z+v<y)]xm(y)=em,oxm<y) (3.3.10)
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where U(y) is the transverse confining potential in the y-direction. These
functions are orthogonal

[ %002}y = 8o (3.3.11)

since they satisfy the same equation with different eigenvalues. We will
assume that these functions x,,(y) are real. !

To calculate the mode amplitudes A, and A,, we proceed as we did
for the 1-D wire and obtain (cf.Eq.(3.3.5))

[6*(xx)],. e =[67@%)], .-
aGR (x,xv ) _ aGR (x,x' ) 2_m6(y _ y' ) (3312)
& |y & |- B
Substituting from Eq.(3.3.9) into (3.3.12) we obtain

D An0) = 3 A5 2n0)
(3.3.13)
zlk[AwAm]x (y)-=—6<y )

Multiplying Eq.(3.3.13) by x,(y), integrating over y and using the orthog-
onality relation (Eq.(3.3.11)) we obtain

. v 4-1 2
Ar =4 and ika[AD +A7]= 22 £ ()
Hence the mode amplitudes are given by

Ay =Ay = ———x.0') (3.3.14)
hvm
As we might expect, the amplitude A» of mode m is proportional to the
transverse wavefunction at the point of excitation, x,(y ). Substituting
Eq.(3.3.14) into Eq.(3.3.9) we obtain the Green’s function:

GR(x,y;x,y ) = 2——xm(y)xm(y‘)exp[ikm|x—x'|] (3.3.15)

km - ___‘M and .Zik_m

Vm ®

here
wher > p



138 Transmission function, S-matrix, Green’s functions

Eigenfunction expansion

We end this section by deriving a result that is often used to calculate
Green’s functions. The basic idea is that for any structure, if we know the
eigenfunctions of the Hamiltonian operator

Hopa(r) = £atpa(r) (3.3.16)

then we can calculate the Green’s function by performing the following
summation:

G¥r,r)= Z % (3.3.17)

We could have used this result to calculate the Green’s function that we
just obtained (Eq.(3.3.15)). However, the mathematics involves contour
integration and is less transparent (see Exercise E.3.2 at the end of this
chapter).

To derive Eq.(3.3.17), we first note that the eigenfunctions form a com-
plete orthonormal set

fw 5 (O o (r)dr = 8, (3:3.18)
so that we can expand the Green’s function in the form

G*r,r)= 2 Ca(r ) Pa(r) (3.3.19)

where the coefficients C. have to be determined appropriately. Next we
substitute Eq.(3.3.19) into the equation for the Green’s function

(E - Hop +in)G*(r,r ) =d(r-r)
and make use of Eq.(3.3.16) to obtain (note that H,, acts only on r, not r')

Y (E - a +in)Cappa(r) = §(r-r)

a

Multiplying by . (r), integrating over r and making use of the orthogo-
nality relation (Eq.(3.3.18)) we obtain the coefficients Ca:

%*
Ca__'_/’_"gl:_
E-¢g +in

Substituting back into Eq.(3.3.19) we obtain the result stated earlier
(Eq.(3.3.17)). Similarly we can show that
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GA(r,r)= Z% (3.3.20)

From Egs.(3.3.17) and (3.3.20) it is straightforward to show that
* +
G*xr)=[¢*w,r)] - G*=[c"] (3.3.21)

so that the advanced function is the Hermitian conjugate of the retarded
function.

3.4 S-matrix and the Green’s function
With this brief introduction to Green’s functions, we are ready to discuss
the Fisher—Lee relation which expresses the elements of the S-matrix in
terms of the Green’s function (see D. S. Fisher and P. A, Lee (1981),
Phys. Rev. B, 23, 6851). Consider a conductor connected to a set of leads.
For convenience, we use a different coordinate system in each lead as
shown in Fig. 3.4.1. The interface between lead p and the conductor is

Fig. 3.4.1. A unit impulse in lead p generates an incident wave which is partially
transmitted to each of the other leads.

defined by x, = 0. We will use the symbol Gj, to denote the Green’s func-

tion between a point lying on the plane x, = 0 and another point lying on

Xg=0:

G (Va3 yp) m G*(xg = 0,y43%, = 0,y,) (34.1)

Let us try to write this quantity in terms of the S-matrix element connect-
ing the two leads. This is easy to do if we neglect the transverse dimen-
sion (y) of the leads and treat them as one-dimensional. We know that
the unit excitation at x, = 0 gives rise to a wave of amplitude A, away
from the conductor (not shown in the Figure) and a wave of amplitude
A, toward the conductor. The wave traveling toward the conductor is
scattered by the conductor into different leads. Hence we can write

GR = 8,A; +5 g A} (34.2)
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But we know that (see Eq.(3.3.6))

i

A=Ay =——
p p v,
Also, Sap = Sgp[Vp/Vq (see Eq.(3.1.4))
Hence from Eq.(3.4.2) we obtain
Sgp = —Ogp +ih/vv, Gy (3.4.3)

This is the desired relation expressing the S-matrix in terms of the Green’s
function.

Multi-moded leads

The details are slightly more complicated if we take multiple modes in
the leads into account. Instead of Eq.(3.4.2) we now have

GpOsYe)= 3, | SumAn +um AL 2. (70) (3.4.4)

mepneq

From Eq.(3.3.14) we know that

An =Ay = —h;xrn(}’p)
Vm

Also, S = Snm | Vi /Vn (see Eq.(3.1.4))

Hence from Eq.(3.4.4)

Ch0ar= 3, ¥, -+ Jv‘—v— 200 B +Seml2as)  (345)

mepneq

In order to obtain an expression for an individual S-matrix element, we
multiply Eq.(3.4.5) by x,(v:)x,.(vs), integrate over y, and y, and make
use of the orthogonality relation (see Eq.(3.3.11)):

Sun = =B + iV [ [ 1,00 G0 72) fn O )yadys  (3.4.6)
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Magnetic field in the leads

In general there is a non-zero magnetic field present in the leads which
complicates the discussion considerably. Although we can calculate
transverse mode wavefunctions even when a magnetic field is present
(see Section 1.6) these wavefunctions do not satisfy the orthogonality
relation stated in Eq.(3.3.11) (see Exercise E.2.6 at the end of Chapter 2).
Consequently the derivation of a Fisher—Lee relation gets more compli-
cated (see for example Eq.(88) of H. U. Baranger and A. D. Stone (1989),
Phys. Rev. B, 40, 8169). To simplify our discussion, we will assume that
any magnetic field is present only inside the conductor and not in the
leads. In an actual calculation we can include a length of the lead as part
of the conductor and reduce the vector potential to zero over this length.
If the vector potential were to have a transverse component (along y)
then this would introduce a spurious magnetic field due to the non-zero
dA, / ox. But as we explained in Section 2.6, the vector potential must be
chosen to be purely longitudinal (along x) in every lead, in order to per-
mit us to define scattering states. Thus it can be reduced to zero without
introducing spurious effects. This approach has been used by several
authors to give sensible results both at low and high magnetic fields (see
for example, H. U. Baranger and A. D. Stone (1991), Phys. Rev. B, 44,
10637 and M. J. McLennan et al. (1991), Phys. Rev. B, 43, 13846, 14333).
However, this is not a necessary assumption. Several authors have re-
ported numerical calculations taking a non-zero magnetic field in the
leads into account (see for example, H. Tamura and T. Ando (1991),
Phys. Rev. B, 44, 1792, M. Leng and C. S. Lent (1993), Phys. Rev. Lett.,
71, 137 and Y. Wang et al. (1994), Phys. Rev. B, 49, 1928).

3.5 Tight-binding model (or the method of finite differences)

Next we address the question of how we can calculate the Green’s func-
tion (and hence the S-matrix via the Fisher-Lee relation), for an arbi-
trarily shaped conductor. Basically we need to solve the differential
equation for the Green’s function (see Egs.(3.3.8a), (3.3.2)):

[E - Hop(r) +in| GR(15¢ ) = (r - 1) (3.5.1)

Hop(r) =

GV +eA) | 1y (3.52)
2m

for arbitrary U(r) and A(r). We will restrict the discussion to two



142 Transmission function, S-matrix, Green’s functions

dimensional conductors, but the approach can be applied to three-
dimensional structures in a straightforward manner.

A common approach for solving a differential equation like Eq.(3.5.1) is
to discretize the spatial coordinate so that the Green’s function becomes
a matrix:

G'@r) — G'GJ)

where the indices i, j denote points on a discrete lattice. The differential
equation becomes a matrix equation

[E+in)y -H|G* =1 (3.5.3)

where [I] is the identity matrix and [H] is the matrix representation of the
Hamiltonian operator H,,. We can then calculate G® by inverting the
matrix [(E + in)] - H] numerically. How do we write down the matrix
[H]? The basic idea is best appreciated with a simple 1-D example
without any magnetic field. Later we will generalize it to 2-D conductors
in arbitrary magnetic fields.

Matrix representation for H,, in 1-D
In 1-D, with the vector potential set to zero, the Hamiltonian operator
(Eq.(3.5.2)) simplifies to
n &
Hyym———+U(x
op 2m dxz ( )
To obtain a matrix representation for this operator, we consider the quan-
tity HopF(x) where F(x) is any function of x. Now we choose a discrete

j= -2 -1 0 1 2
e O o o [}
— x

Fig. 3.5.1. An infinite linear chain discretized into a lattice.

lattice whose points are located at x = ja, j being an integer (Fig. 3.5.1)
and write

n* d°F
[HoFl,..jo = [- ﬁ'&}—f]x ja+ U,F, (3.54)
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where FF—>F(x=ja) Uj—>U(x = ja)

We now use the method of finite differences to approximate the deriva-
tive operators. Assuming a is small we can approximate the first deriva-
tive by

dF 1
[-a;]x-(ﬂ%)a - ;[E+1 B Fj]

and the second derivative by

[9.5] A
d [ e |lde e Ldx i)

— = {Fu - 2F + B}

With this approximation we can write from Eq.(3.5.4),

[HoF]_, = (U; +20F, - tF;1 - tFj (3.5.5)

where t wh?/2ma’ (3.5.6)
We can rewrite Eq.(3.5.5) in the form
[HoF(x)],_, = 2 H(j,)F (3.5.7)

where H(j,)=U;+2t ifi=j
=—t if { and j are nearest neighbors
=0 otherwise

Eq.(3.5.7) gives us the desired matrix representation for the Hamiltonian
operator for a 1-D linear chain (Fig. 3.5.1).

-t 0 0 0
-t U, +2t -t 0 0
H=]0 -t Upg+2t -t 0
0 0 -t U+2t -t

0 0 0 -t

Each site is linked to its nearest neighbor by the element ¢, while the
diagonal elements are given by the potential energy plus 2t.
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It is interesting to note the similarity of this discretized Hamiltonian to
the tight-binding Hamiltonian which is widely used to model electronic
transfer in molecules and condensed matter. In the tight-binding model
the wavefunction is expressed in terms of localized atomic orbitals, one
at each site. Orbitals on neighboring sites are connected by what is
referred to as a ‘hopping matrix element’ or an ‘overlap integral’. The
local potential U; (+ 2¢) in our model plays the role of the energy of the
orbital localized at site j while ¢ (= h*/2ma?) plays the role of the overlap
integral between orbitals on neighboring sites.

Dispersion relation for a discrete lattice

We know that for a uniform 1-D wire with a constant potential U(x) = Uy,
the eigenfunctions are plane waves with a parabolic dispersion relation:

Kk’

Yi(x) = exp[ikx] where E =U,+ 5
m

How is this result modified for a discrete lattice? For a discrete wire the
Schrédinger equation can be written as (see Eq.(3.5.5))

Eyj=Uo+200; -ty ;1 -1a
which is satisfied by a solution of the form

w,--exp[iloc,-] where x; = ja

provided E = Uy + 2t(1 - cos(ka)) (3.5.8a)

This is the dispersion relation for a discrete lattice. It is easy to show that
as we let the lattice constant a tend to zero we recover the usual
parabolic relationship. Also, the velocity is given by

Ay = %% = 2atsin(ka) (3.5.8b)

Again as we let a tend to zero, we recover the usual result v = 2k/m.

Matrix representation for H,, in 2-D

It is straightforward to extend Eq.(3.5.7) to two or more dimensions. In
general the matrix elements of [H] are given by
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[H], =U@)+zt ifi=j
= —f; if i and j are nearest neighbors (3.5.9a)
=0 otherwise

where (1) z is the number of nearest neighbors (z = 2 for a linear chain
and z = 4 for a square lattice), (2) r; is the position vector for lattice site
i, If the vector potential is zero, then the nearest neighbor coupling is
equal to —¢ as in the 1-D example. With a non-zero vector potential it is
modified to

fj= texp[ieA.(r,- -1 )/h] (3.5.9b)

The vector potential A is evaluated at a point halfway between sites i and
Jj, that is, at (r; + r;)/2. For a discussion of Eq.(3.5.9b) see R. P. Feynman
(1965), Lectures on Physics, Vol.Ill, 21-2, (New York, Addison—Wesley).

Truncating the matrix

Now that we have a matrix representation for the Hamiltonian operator it
may seem straightforward to set up the matrix [(E + in)l - H] and invert
it (see Eq.(3.5.3)):

G* =[(E +in)I - H]" (3.5.10)

The only problem is that the matrix is infinite dimensional! This is be-
cause we are dealing with an open system connected to leads that stretch
out to infinity. If we simply truncate the matrices at some point, then we
would effectively be describing a closed system with fully reflecting
boundaries and not the open system with non-reflecting boundaries that
we would like to describe. The truncation has to be done more carefully
as we will now describe.

Consider a conductor connected to the lead p as shown in Fig. 3.5.2.

LEAD p

Fig. 3.5.2. A conductor described by a Hamiltonian H, connected to lead p described
by Hp, through the coupling matrix 7, (see Eq.(3.5.11b)). A point in lead p is labeled p;
if it is adjacent to point i inside the conductor



146 Transmission function, S-matrix, Green’s functions

We can partition the overall Green’s function in Eq.(3.5.10) into sub-
matrices as follows:

G, Gk [(E+impI-H, =,
I:ch Gc ‘E; EI- Hc

-1

(3.5.11a)

where the matrix [(E + in)/ — H,] represents the isolated lead, while the
matrix [EI — H¢] represents the isolated conductor. We could add an in-
finitesimal imaginary term (in) to the conductor matrix as well but it is
not necessary. As we will see, the coupling to the leads effectively gives
rise to a finite imaginary term that will swamp it. The coupling matrix is
non-zero only for adjacent points i and p; (see Fig. 3.5.2):

Tp(pii) =t (3.5.11b)
We will now derive an explicit expression for the sub-matrix G¢, since

this is the part that we are really interested in. From Eq.(3.5.11) we can
write

[(E +in)l - H,|Gc +[7,]Gc =0 (3.5.12a)

[EI - HGe +[75]Goe = 1 (3.5.12b)

From Eq.(3.5.12a) we obtain
Gyc = -gh1,Gc (3.5.13)

where gr =[(E+in-H,] (3.5.14)

is the Green’s function for the isolated semi-infinite lead. Substituting
Eq.(3.5.13) into Eq.(3.5.12b) we obtain

G =[EI - He -73gbv, | (3.5.15)

Note that the matrices in this expression are finite matrices of dimensions
(C x C), C being the number of points inside the conductor. But the infi-
nite lead is taken into account exactly through the term 7;g57,. It might
seem that we have not gained much since we have to invert an infinite
matrix to obtain gf from Eq.(3.5.14). However, this is not necessary.
Since g; represents the Green’s function for an isolated lead it can usu-
ally be determined analytically. From Egs.(3.5.15) and (3.5.11b) we can
write
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[rsg}?rp],-j =’g; (pi, ;) (3.5.16)

since the coupling matrix 7, is zero for all points in the lead except those
(pi,p;) that are adjacent to points (i,j) inside the conductor.

Assuming that different leads are independent so that their effects are
additive, we can write:

G =[EI-Hc - =*]" (3.5.17a)

where R = 22,‘3 and 2X(,j) =g (pi,p;) (3.5.17b)

4

From hereon we will use G® to denote what we were writing as G, since
this is the only component of the overall Green’s function that we will be
using in our discussion. It represents the propagation of electrons between
two points inside the conductor, taking the effect of the leads into
account through the term =R

The term Z® can be viewed as an effective Hamiltonian arising from
the interaction of the conductor with the leads. A similar term is often
used to describe the interaction of the electrons with phonons and other
electrons (which we are neglecting) and is called the self-energy. By
analogy we will refer to Z® as the ‘self-energy’ due to the leads. However,
it should be noted that the self-energy usually provides only an approxi-
mate description of the electron—phonon and electron—electron interac-
tions which involve complicated systems with internal degrees of free-
dom. Leads, on the other hand, are simple inert objects whose effect is
described exactly by Z*. We have made no approximations in arriving at
Eq.(3.5.17) from Eq.(3.5.10).

Self-energy

To use Eq.(3.5.17) we need the self-energy Z®. For this we need to calcu-
late the Green’s function gy for an isolated lead. Earlier we had calcu-
lated the Green’s function for an infinite wire (see Eq.(3.3.15)), but we
cannot use it here because what we need is the Green’s function for a
semi-infinite wire that terminates on one side, For a semi-infinite discrete
wire it can be shown that the Green’s function between two points along
the edge is given by (see Exercise E.3.3 at the end of this chapter)

Sop) =7 Sanprewliali ) (519
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where the (real) function x,(y,) describes the transverse profile of mode
m in lead p and v, is its velocity. Substituting from Eq.(3.5.18) into
Eq.(3.5.17b) we obtain the desired expression for the self-energy:

R, jy=-t Z Xm(D:)exp[+ikmalx,. () (3.5.19)
mcp

Note that it is not necessary to assume the leads to have regular shapes
with well-defined transverse modes, though we have done so for con-
venience. Even for irregularly shaped leads we can in principle calculate
the Green’s function and obtain the appropriate self-energy.

Transmission function

Once we have calculated the Green’s function, we can use the Fisher—
Lee relation (see Eq.(3.4.6)) to obtain the elements of the S-matrix, from
which the transmission function can be calculated. Using this procedure
we can express the transmission function in a rather compact form (see
Exercise E.3.4 at the end of this chapter):

T, = TH[[,G*T,G* (3.5.20)

where ‘Tr’ represents the trace and the elements of the matrix I', are
given by

D) = D a2 () (3521

Using the expression for the self-energy (Eq.(3.5.19)) and the relation be-
tween velocity and wavenumber (Eq.(3.5.8b)), it is straightforward to
show that

T,=i[z} - 2] (3.5.22)

where the advanced self-energy (Z5) is the Hermitian conjugate of the
retarded self-energy (Z7). It should be mentioned that Eq.(3.5.20) for the
transmission function follows from the Fisher—Lee relation only for p = g.
But this is not very important because the elements of the transmission
function with p = g have no effect on the current (see Eq.(2.5.7)).

The physical meaning of Eq.(3.5.20) is not very transparent, but it pro-
vides a compact expression for calculating the transmission function. The
Green’s function GR describes the dynamics of the electrons inside the
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conductor, taking the effect of the leads into account through the self-
energy Z®. The function I' describes the coupling of the conductor to the
leads. We will discuss the meaning of these functions further in Section
36.

Sum rule

Earlier in this chapter we derived the ‘sum rule’ for the transmission func-

tion (see Eq.(3.1.5))
2 T, = 2 Tp=M,

where M, is the number of modes in lead p. This sum rule is very impor-
tant because it ensures current conservation. We can derive a similar sum
rule in terms of the spectral function. Starting from our expression for the
transmission function (Eq.(3.5.20)) we can write

T, - Tr[[,G*IG*| and ST - Tr[[,G*TG?| (3.5.23)
q q

where r=ayr,-% i[z5 - 23] -i[z" - 24] (3.5.24)
P P

From Eq.(3.5.23) we obtain the desired ‘sum rule’

2 T = 2 Tp = Tr[T,A] (3.5.25)

if we make use of the following identity (see Eq.(3.6.4) in the next sec-
tion)

Am i[GR - GA] = G*'TG? = GATG?

The quantity A is known as the spectral function which plays the role of a
generalized density of states inside the conductor taking the leads into
account. We will discuss this concept in the next section. For the moment
we just wish to point out that in the language of Green’s functions, the
quantity Tr [T',A] plays the role of the number of modes M,.
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A few remarks

Before we leave this section let us take a moment to recognize what we
have accomplished. We have managed to eliminate the infinite leads from
the formulation. The transmission function is expressed completely in
terms of quantities that are defined inside the finite-sized conductor (see
Eq.(3.5.20)). Even the function Z;(i, ) describing the effect of the lead p
is defined for points i and j located inside the conductor. Thus if we dis-
cretize the conductor into N lattice sites then (at each energy E) each of
the matrices in the formulation has dimensions (N x N). The numerical
procedure for calculating the transmission function is thus quite straight-
forward. The only practical limitation is that there is an upper limit to the
size of matrices that can be handled, and this limits the number of lattice
sites that we can use.

In arriving at this formulation, the key concept is that a lead can be re-
placed by a ‘self-energy function’ given by Eq.(3.5.19). As we let the lat-
tice constant a tend to zero and go to the continuum limit, the self-energy
reduces to

[23G1].y = -84 - 280 T 4w Inta(p)  (35.26)

where we have replaced (1/a) by a delta function at the interface, made
use of Eq.(3.5.8b), and also assumed that the transverse mode functions
form a complete set:

D An (P Xn (1) = 85,

The real part of the self-energy is given by the first term on the right of
Eq.(3.5.26). It simply changes the diagonal element (see Eq.(3.5.9a)) from
(Ui + zi) to (U; + (z - 1)), as if there were one less nearest neighbor. The
imaginary part of the self-energy is given by the second term on the right.
As we will discuss in the next section, it represents the rate at which par-
ticles can escape through the lead, somewhat like the concept of a
‘surface recombination velocity’ used by device engineers.

To get an intuitive feeling for the method described here, we strongly
recommend that the reader go through the simple example described in
Exercise E.3.5. The reader may also find the discussion in M. J. McLennan
et al. (1991), Phys. Rev. B, 43, 13 846 useful (see Appendix). The ap-
proach we have described here is basically an extension of that described
by Caroli et al. (1971), J. Phys. C: Solid State Physics, 4, 916. Results
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similar to Eq.(3.5.20) have been obtained by several authors (see for
example, Eq.(7) of Y. Meir and N. S. Wingreen (1992). Phys. Rev. Lett.,
68, 2512 or Eq.(4) of M. Sumetskii (1991), J. Phys. Cond. Matter, 3,
2651). Indeed many different approaches have been described in the
literature for handling the open boundary conditions associated with the
leads, although many authors may not use the word ‘self-energy’ in this
context,

3.6 ‘Self-energy’
We have seen in the last section that the Green’s function which is de-
fined as (Eq.(3.3.8a2))

Gt =[E-H +in]’

can be written in the form (Eq.(3.5.17a))
G* =[E-Hc- 2] (3.6.1)

where Hc is the Hamiltonian for the isolated conductor, and the self-en-
ergy I describes the effect of the leads on the conductor. This is an im-
portant conceptual step, for it allows us to replace an infinite open system
with a finite one (Fig.3.6.1). In this section we will discuss two important
concepts defined by the relations

I =i[ZF - 2*] (3.62)
Ami[G*-G*] (3.6.3)
(a) Conductor with infinite leads (b) Equivalent finite conductor
LEAD LEAD
LEAD
Secif-energy
terms

Fig. 3.6.1. A conductor connected to infinite leads can be replaced conceptually by an
equivalent finite conductor with self-energy terms.
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and derive a useful relationship between them:
A=G*'TG* =GATG* (3.6.4)

We have mentioned earlier that the Green’s function is like a generalized
S-matrix that tells us the response at any point due to an excitation at any
other. From this point of view Eq.(3.6.4) is the analog of the unitarity rela-
tion

I=SS"=S5*S (same as Eq.(3.1.3a))
satisfied by the S-matrix. Indeed in the last section we made use of

Eq.(3.6.4) in deriving the sum rule for the transmission function (just as
we used the unitarity of the S-matrix in Section 3.1).

Eigenstate lifetime

Usually in quantum mechanics one deals with isolated or closed systems
whose eigenstates are found by diagonalizing the Hamiltonian Hc:

Hcao = €a0W a0 (3.6.5)

However, our interest is often in open systems with strong coupling to the
leads. As we have seen this gives rise to a self-energy Z® (see
Eq.(3.5.19)) so that we have an effective Hamiltonian [H¢ + Z*] whose
eigenstates can be written as

[HC + ZR]Wa =EqYPa (3.6.6)

This looks just like Eq.(3.6.5) but there is an important difference: the
eigenenergies are complex since the self-energy is in general not
Hermitian. If it were Hermitian then the quantity I" defined by Eq.(3.6.3)
would be zero.

We could write the new eigenenergies as

Ea = Eao — Ag —i(ya/2) (3.6.7)

where &40 is the eigenenergy of the isolated conductor described by [Hc]
(see Eq.(3.6.5)). The time dependence of an eigenstate of [Hc + Z*] has
the form

exp[—isat/h] - exp[—i(sao -A, )t/h]exp[—y at/h]

A, represents the shift in the energy due to the modification of the
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dynamics of an electron inside the conductor by the interaction with the
leads. On the other hand, the imaginary part of the energy 7. reflects the
fact that an electron injected anywhere in the conductor will eventually
disappear through one of the leads stretching out to infinity. Taking the
squared magnitude of the wavefunction we obtain the probability:

|Wa |2 exp[—2yat/h]

The quantity #/2y. thus represents the ‘lifetime’ or the average time an
electron remains in state a before it escapes out into the leads. The life-
time is infinite if the self-energy is Hermitian, that is, if I' = 0.

Eigenfunction expansion
To see the effect of the self-energy term on the Green’s function it is con-
venient to express the Green’s function in terms of the eigenstates of the
Hamiltonian, It might seem that we can use the expression we derived
earlier (see Eq.(3.3.17))

G*r,r)= 2 _'/’.ag)_'l’:a(l‘ )

if we define y, as the eigenstate of the effective Hamiltonian [Hc¢ + Z*]:

[HC + ZR]Wa - Ea"pa (3.6.88)

However, this is not correct. Since [Hc + Z*] is not Hermitian its eigen-
states 1, do not form an orthogonal set, unlike those of [Hc]. As a result
we need to modify Eq.(3.3.17), making use of the eigenstates @, of the
adjoint operator as well.

[He + z"]q:a =Ea®, (3.6.8b)

The ®s and s are identical if we are dealing with a Hermitian operator,
but not with non-Hermitian operators. Together the ®s and s form what
is known as a bi-orthonormal set having the property that

[ (X s (X)dr =g (3.6.9)

(See p. 884 of P, M. Morse and H. Feshbach (1953), Methods of
Theoretical Physics, (New York, McGraw-Hill)). The correct expression
for the Green’s function has the form (see for example, W. van
Haeringen, B, Farid and D. Lenstra (1987), Physica Scripta, T19, 282):
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G*rr)= 3 %’1‘5—) (3.6.10)

For an isolated conductor the eigenvalues are real and given by &q0.
The individual terms in Eq.(3.6.10) then have singularities at E =~ €50 and
we need the infinitesimal 7 (see Egs.(3.3.8)) to keep the Green’s function
from blowing up at these energies. The coupling to the leads takes care of
this problem automatically by making the eigenenergies complex, so that
there are no singularities for real values of E. The effect of the complex
eigenenergies is best appreciated by looking at the spectral function,

Spectral function

A very important concept is that of the spectral function defined by

Eq.(3.6.3). Using Eqgs.(3.6.10) and (3.6.7) we can write the spectral func-
tion as

ALY = S ya(r)a(r Vo 3.6.11
©F)= Fe® Do) p— S (361D
Fig. 3.6.2 shows how the spectral function evolves as the coupling to the
leads is increased. The self-energy I® becomes larger and shifts the

eigenenergies as indicated in Eq.(3.6.7). As a result, the peaks of the
quantity

Ya
(E - €00+ Ac) +(¥a/2)

(1) shift by A, and (2) broaden by y.. When the coupling is very large
the peaks all merge and the peaks corresponding to different eigenstates
can no longer be distinguished.

| A(r.r, E) | Very weak

coupling

[~ Weak

coupling

Strong
< coupling

> E

Fig. 3.6.2. The spectral function for a conductor weakly coupled to the leads shows
peaks at energies corresponding to the eigenvalues of the isolated conductor. As the
coupling is increased the peaks shift and broaden.
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One small point. Eq.(3.6.11) conveys the impression that each of the
peaks has the form of a Lorentzian function:

—_r
(E-e)’ +(r/2)*

However, this is not necessarily true. This is because the self-energy itself
is a function of E. Consequently the eigenfunctions ®,, 1, as well as the
eigenvalues &, are functions of E and the peaks in the spectral function
can have very non-Lorentzian shapes.

The trace of the spectral function represents the density of states:

N(E)= —;;Tr[A(E)] (3.6.12)

If the lifetime of the eigenstates is large, then Eq.(3.6.12) leads to the
conventional expression for the density of states. To see this, we make
use of Eq.(3.6.9) to write

Ya
Tr[A]= [A(r,r)dr = 2 E i TA TG0 (3.6.13)

From Eq.(3.6.12) we can write

1 Ya
2 27 (E — €q0 + Ao)? + (Ya/2)?

—>26(E—£ao+Aa) as y,—0

N(E) =

in agreement with what we would expect for long-lived eigenstates with
well-defined energies. Eq.(3.6.12) provides us with a general expression
for the density of states that can be used even when eigenstates have
finite lifetimes.

Local density of states

The diagonal elements of the spectral function give us the local density
of states

p(t,E) = —ZI;A(r, rE) = —%Im[GR(r,r;E)] (3.6.14)

From Eq.(3.6.11) we can write
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1 Ya *
O )~ Y e Ay 2 Goy VOO

- EB(E - €a0)|Ya(r) |2 as ya—0

again in agreement with what we would expect for long-lived eigenstates
with well-defined energies. This function provides insight into the spatial
variation of the states in a conductor as can be appreciated from the
simple example (see Fig. 3.6.3) showing the variation in the local density
of states across the width of a quantum wire in a magnetic field.

4

750 A

v
—_ x —p F

Fig. 3.6.3. Gray scale plot of the local density of states p(y,E) for a quantum wire

(assumed uniform in the x-direction) in a magnetic field of B = 5.6 T. Bright regions

indicate a large density of states. Adapted with permission from Y. Lee et al. (1992),
Superlattices and Microstructures, 11, 137.

When the energy matches the energy of a bulk Landau level

the corresponding eigenstates are located in the interior of the sample
giving rise to a large density of states inside the sample. But when the
energy lies between two Landau levels the corresponding states are local-
ized near the edges (see Section 1.6 and also Chapter 4) giving rise to a
large density of states near the edges.

Mesoscopic conductors in general often display significant spatial vari-
ations in the local density of states that influence the nature of con-
duction through the sample. With the advent of scanning tunneling
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microscopy (STM) it has become feasible to probe the local density of
states on an atomic scale thus making this concept very real from an
experimental point of view (see for example, C. J. Chen (1993), Intro-
duction to Scanning Tunneling Microscopy, Oxford University Press).

A useful identity

We will now prove the identity stated earlier:
A=G*TG*=G*TG* (same as (Eq.(3.6.4))
First we use Eq.(3.5.17a) and its Hermitian adjoint to write
[6*]"-[6*] =24 -2*=ir (3.6.15)
Multiplying by G* from the left and by G* from the right we obtain
G*-G*=iG*IrG* — A=G'rgG*

as stated above. The other half of the relation is obtained if we multiply
Eq.(3.6.15) by G* from the left and by G* from the right.

3.7 Relation to other formalisms

In Section 3.5 we showed that the transmission function T, between two
leads p and g can be written in terms of the Green’s functions as

To=Tr [I‘,, G'T, G"] (same as Eq.(3.5.20))

The Green’s function G® describes the dynamics of the electrons inside
the conductor (taking the leads into account), while I', describes the
strength of the coupling of lead p to the conductor (see Egs.(3.5.19)-
(3.5.22) for the definitions of these quantities). Although we are using the
language of Green’s functions, these results are basically obtained from
scattering theory. In this section we will relate these results to those ob-

tained from other formalisms that are widely used, namely the Kubo for-
malism and the transfer Hamiltonian formalism. We will also use

Eq.(3.5.20) later to relate to the non-equilibrium Green function formalism
in Chapter 8.
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Kubo formalism
The Kubo formalism is based on the fluctuation-dissipation theorem
which relates the equilibrium noise (that is, fluctuations) to the linear
response conductance (that is, dissipation). A special case of this general
theorem 1is the Nyquist-Johnson formula mentioned earlier (see
Eq.2.7.7)):

1

2ksT

G=

fm(l(t + w)(w)),, dt

This relationship allows us to calculate a non-equilibrium property like
conductance indirectly by calculating the equilibrium noise using the
methods of equilibrium statistical mechanics (see for example M.
Biittiker et al. (1993), Phys. Rev. Lett., 70, 4114). There is a similar rela-
tionship between the non-local conductivity o(r,r) and the current
density J(r) which is widely used in the literature (for a fairly extensive
list of references see H. U. Baranger and A. D. Stone (1989), Phys. Rev. B,
40, 8169).

The Kubo formalism is commonly used to derive the following expres-
sion for the zero temperature conductivity of a uniform rectangular
conductor with all sides equal to L (d = number of dimensions and all
quantities are evaluated at the Fermi energy)

2 32
a-%%;vx(k)v,(k)m“(k,k)r (3.7.1)

Eq.(3.7.1) is used as the starting point for calculating the ensemble-
averaged conductivity of large conductors (see, for example, Eq.(2.20) of
P. A. Lee and T. V. Ramakrishnan (1985), Rev. Mod. Phys., 57, 287). We
will use this result in Section 5.5 to calculate the conductivity corrections
due to interference effects. From Eq.(3.7.1) we can write the conductance
as
d-1 2 32
LT Snemm|Ge (72

G= 3
L h P&

We will now show that Eq.(3.7.2) follows from the Landauer formula
G = (2¢*/h)T , making use of Eq.(3.5.20) for the transmission function.
Although Eq.(3.5.20) was derived using a discrete lattice in real space,
we can use a unitary transformation to transform it to any other con-
venient representation. For example in the k-representation we can write



3.7 Relation to other formalisms 159

G=— 21‘1(1:1,!( YGR (K, K)I2(k, k1) GA (K2, ki)
Kyl Rk

Note that the terms in this summation with k; = k' and k2 = k
Nk, k)G (K ,K)I2(k k)G*(k k')

are all positive real quantities since G*(kk')= G*(K',k)" and the diag-
onal elements of T are real since I is Hermitian (see Eq.(3.6.2)). By con-
trast the other terms with k= k and k; = k' are complex quantities with
randomly varying phases that average out to zero, and can be omitted
from the summation:

G- —2{-21‘1(1(,1()|G"(k,k) [ T k) (3.7.3)
kk

This is identical to the result we are trying to prove (Eq.(3.7.2)) if

Ti(k k) = Ta(k k) = 228 ”"'(")

(3.74)
We will now justify this expression for I for a uniform conductor with two
identical leads.

In Section 3.6 we saw that the physical significance of the function
I,(k,k) is that it represents /2 times the rate at which an electron
placed in a state & will escape into lead p. From this point of view
Eq.(3.7.4) is quite reasonable. Since the electron wavefunction is spread
out over a box of length L and the electron can only escape through the.
two surfaces with a velocity v., the rate of escape is given by 2v,/L, so
that

Ik, k)—ﬁ 2v,(k) hvi(K)
2 L L

For a formal derivation of Eq.(3.7.4), consider a one-dimensional
conductor with N sites as shown in Fig. 3.7.1. The only non-zero
components of the self-energy involve the end-points. Assuming both
leads to be identical we can write (see Eq.(3.5.21))

n@y -2 -nwm

Now we transform from the site representation to a k-representation using
the unitary transformation
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1 2 ... N-1N

EAD1 | @ © 000 o o [iman:

Fig. 3.7.1. A one-dimensional conductor with N discrete points connected
to two leads.

=57 Sesvt-ikx)l)
Using the usual rules for matrix transformation
Lok k) = 3 (k) Tp( ) k)
o]
we obtain (note L = Na)
Lk, k) = % =I5 (k, k)

It is straightforward to extend this result beyond the one-dimensional
case considered here. For a conductor of uniform cross-section we could
transform to a mode representation in the transverse direction and a plane
wave representation in the longitudinal direction and show that

T(m, k;m, k) = h% = Ta(m, k;m, k)

For wide conductors the boundaries have a negligible effect on the con-
ductance so that we could replace the real boundary conditions in the
transverse direction with simple periodic boundary conditions. The modes
in the transverse direction would then be plane waves just like those in
the longitudinal direction and we could replace the index (m,k) with the
two-dimensional vector k and obtain Eq.(3.7.4).

It is interesting to note that Eq.(3.7.2) applied to a ballistic conductor
yields a finite conductance equal to (2¢%/h)M, (see Exercise E.3.8 at the
end of this chapter). As we have discussed in Chapter 2, this represents
the contact resistance between the conductor and the reservoirs at the
ends. Although we are not explicitly drawing these reservoirs, their pres-
ence is always implicit in our use of the Landauer formula. The usual
derivations of Eq.(3.7.2) are not based on the Landauer formula and often
make no explicit reference to reservoirs. Yet the influence of the reservoir
creeps in through the boundary conditions giving rise to a contact resis-
tance.
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Transfer Hamiltonian formalism

The transfer Hamiltonian formalism is widely used to describe tunneling
processes involving electron transfer between two leads separated by an

EW

Wea.k coupling

LEAD 1

,,,.

Fig. 3.7.2. Transfer Hamiltonian formalism is used widely to describe the transfer of
electrons from one lead to another by tunneling through an insulator.

insulator (Fig. 3.7.2). In the transfer Hamiltonian formalism the current is
related to the matrix elements, M, between lead 1 and lead 2:

1-—1ﬂmm LE|ME) pE)p(EXE (375

where p1(E) and p,(E) are the density of states in leads 1 and 2 respec-
tively (see for example, Eq.(2.3.5) on p. 69 of C. J. Chen (1993),
Introduction to Scanning Tunneling Microscopy, Oxford University Press).
The change in the current in response to a change in the potential u»
(keeping u; constant) can be written as

i LIV R) (37.6)
where we have assumed low temperature (so that f(E)~ 3 u: - E)) and
also neglected any change in M, p; and p. due to the applied bias.

Eq.(3.7.6) relates the slope of the current—voltage curve to the density
of states in the leads. This allows one to use current—voltage measure-
ments to deduce the density of states p,(E) in one lead, if the density of
states p1(E) in the other lead is known (any energy dependence of M is
commonly neglected). Indeed tunneling experiments have often been
used as a probe for the density of states in unknown materials.

Could we apply Eq.(3.7.5) to our problem which involves the transfer of
electrons from one lead to another through a conductor (see Fig. 3.7.3)? In
the scattering formalism the current is given by (see Eq.(2.5.1)):

== ﬂ F(E) - H(E)|T(E)E 3.7.7)
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CONDUCTOR
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® [EAD2
._.

.

Fig. 3.7.3. Our problem involves the transfer of electrons from one lead to another via
an intermediate state in the conductor.

LEAD 1

where T is the transmission function. Egs.(3.7.5) and (3.7.7) are consis-
tent if the following relation is satisfied:

T = 4n*|M[ pip2 (3.7.8)

We could use Egs.(3.5.20), (3.5.22), (3.5.17b) and (3.6.3) to write the
transmission function in the form T = Tr{aMa,M"*], where M = £G* and
a1, a; are the spectral functions for the isolated leads. This can be viewed
as a generalized version of Eq.(3.7.8), since the spectral function is like a
generalized density of states.

LEAD 1

/4

Strong coupling

Weak coupling

Fig. 3.7.4. If the conductor is very strongly coupled to one lead relative to the other
then we can view the conductor as an extension of that lead.

The transfer Hamiltonian point of view is usually most useful when one
lead is weakly coupled. Suppose the conductor is very strongly coupled to
lead ‘1’ and only weakly to lead ‘2’ (see Fig. 3.7.4). We could then view
the conductor as a part of lead ‘1’ that is always-in equilibrium with it,
regardless of the applied bias. We would then expect that the transmission
function can be written in the form

T = 42°| M| pcp2

where pc(E) is the density of states in the conductor. The matrix element
M now represents just the coupling of lead ‘2 to the conductor and varies
only weakly with energy. One should then be able to deduce the density
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of states in the conductor by measuring dl/du. as discussed earlier (see
Eq.(3.7.6)).

Starting from the general expression we derived for the transmission
function (see Eq.(3.5.20)), we can easily obtain a simpler result that is
appropriate in this limit. We simply note that

s+~ since I1>>T>

so that from Eq.(3.6.4) we can write
G*'TiG* ~A

Hence from Eq.(3.5.20) we can write the transmission function as

T ~ TIA] (3.7.9)

The quantity I'; is non-zero only for points on the conductor adjacent to
lead ‘2’. The transmission function is thus proportional to the spectral
function at the edge of the conductor next to lead ‘2’, and we could
deduce this quantity from the slope of the current—voltage curve. This is
in agreement with what we would have expected from the transfer
Hamiltonian approach since the spectral function A is like a generalized
density of states.

It may seem from the above discussion that the transfer Hamiltonian
formalism is just a weak coupling version of the scattering formalism.
However, there are deeper ‘philosophical’ differences. The transfer
Hamiltonian formalism views transport in terms of electronic transitions
between weakly coupled reservoirs. This viewpoint naturally calls for
(1 — f) factors for the final states. The scattering formalism views trans-
port in terms of the occupation of different eigenstates from different
reservoirs and there is no reason to include the (1 — f) factors, as we dis-
cussed at length in Section 2.6. Inelastic processes can be incorporated
relatively easily into the transfer Hamiltonian formalism.

3.8 Feynman paths

In Section 3.2 we have already seen how the concept of Feynman paths
arises naturally when we combine the S-matrices of successive sec-
tions. However, it is difficult to extend that picture beyond a simple one-
dimensional geometry. The Green’s function on the other hand is like a
generalized S-matrix that can be applied to arbitrarily shaped conductors
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using any convenient representation. In this section we will show how the
Green’s function can be visualized in terms of Feynman paths.

We know that the Green’s function is given by the inverse of a matrix
(see Eq.(3.5.17a)):

G* =[EI- He - Z*]"
The basic idea is to write the matrix [G*]-! as the sum of two parts
[6*] =[Go]" -« (3.8.1)

one of which represents the unperturbed system (Gs') and the other rep-
resents the perturbation (o). From Eq.(3.8.1) we can write

G*=[Gi* - o] =[G'[I - G =[I - Goa] Gy

The inverse can be expanded in an infinite geometric series to obtain the
following expression for G.

GR = Gy + GoaGy + GoaGoaGy + ...
Consider the element (i,j) of one of the terms in this series:
Go(i i) a(i, A) Go(A, A) (4, ) Go(js /)

We could visualize this term as the amplitude of a ‘path’ going from j to
a point A and then on to i. The total Green’s function G*(i,j) is equal to
the sum of the amplitudes of all such paths leading from j to i (see Fig.
38.1):

G, j) = 2 Ap(i,j), P E€all paths starting in j and ending in i
P

Each path is composed of a series of segments which alternately involve
unperturbed propagation (described by Go) and a transition induced by the

CONDUCTOR

LEAD 1

¢ GRG.j)

f) i

Fig. 3.8.1. Schematic representation of a Feynman path leading from a point j to
another point i inside the conductor.
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perturbation (described by a). The choice of G, and a is clearly not
unique and has to be motivated by the physics of the problem at hand.

As an example, suppose we associate the unperturbed part with the
diagonal elements of Hc (see Eq.(3.5.9))

[G3*], =(E-U. -20)3,

then Gy represents the Green’s function for a set of isolated lattice sites:

8
G|, =—— 3.8.2a
(Gl E-Ui-2t (3.8.22)
The perturbation consists of the hopping matrix element connecting adja-
cent sites;

a; = texp[ieA.(r.- -r)/ h], if i and j are nearest neighbors

(3.8.2b)
=0 otherwise

We are neglecting the effect of the leads which is represented by the self-
energy term X®. With this choice of Go and a, a Feynman path has the
form shown in Fig. 3.8.1 consisting alternately of free propagation at an
isolated lattice site and hopping to an adjacent site.

The expansion of the Green’s function need not be carried out in the
position representation as we have done here. It can be carried out in any
convenient representation. For example in the k-representation the
Green’s function is diagonal in the absence of scattering. It is the scatter-
ers that give rise to the off-diagonal terms. Later in Section 5.5 we will
use an expansion in terms of Feynman paths in k-space to discuss the
diagrammatic perturbation theory. For the moment let us illustrate the
utility of this viewpoint by using Feynman paths in real space to
understand the Aharonov—Bohm effect.

Aharonov-Bohm (A-B) effect

The concept of Feynman paths is often useful in understanding the
physics underlying certain phenomena that would otherwise be obscured
in the process of matrix inversion. The best example of this is the A-B
effect. One of the pioneering experiments in mesoscopic physics was per-
formed using a small ring 820 nm in diameter etched out of a high quality
gold film (actual structure shown earlier in Fig. 0.2). Experimentally the
conductance of the ring was observed to oscillate as a function of the
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magnetic flux enclosed by the ring (see, for example, the article by R. A.
Webb and S. Washburn (1988) in Physics Today, 41, 46):

G=Go+ (A;cos(l—g?g- + q‘)] (S = area enclosed by ring)

The period B, of the oscillations is obtained by setting the phase differ-
ence to 2a:

Lel:i=2ﬂ B,S = h/|e|

This is called the h/e effect since the period corresponds to a change in
the enclosed flux by A/e.

Lead 1 Lead 2

Fig. 3.8.2. A ring-shaped conductor exhibits periodic oscillations in its conductance as
a function of the magnetic field. Actual measurements are made using voltage probes
in a four-terminal configuration but we will not worry about it.

The oscillatory term arises from the interference between the waves
traversing the two arms of the ring (see Fig. 3.8.2). The transmission from
mode m in lead ‘1’ to mode # in lead ‘2’ can be written as

T(nem)—|t+6[

where £ is the total amplitude of all the Feynman paths going through the
upper arm of the ring that start in mode m at A and end in mode 7 at B.
Similarly #, is the total amplitude of all the paths going through the lower
arm of the ring that start in mode m at A and end in mode # at B:

h= EAP and 1, = EAP

all paths P going all paths P going

through upper arm through lower arm
The oscillations in the conductance arise because a vector potential
changes the phase relationship between #; and t,. The conductance peaks
whenever #; and £, are in phase. The effect of a vector potential A on #,
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and ¢, can be seen from Eq.(3.8.2b). The amplitude associated with a path
connecting two nearest neighbors i and j is modified as follows:

a;= texp[ieA.(n -1 )/h] (same as Eq.(3.8.2b))

Consequently the vector potential A introduces an extra phase to every
path:

t(B) ~ ti(0)exp[ign] and £2(B) ~ t2(0)exp|ig: |

where ¢.=% j Adl, =% j Adl

upper arm lower arm

We are assuming that the ring is thin enough that there is not much dif-
ference between the areas enclosed by the inner and the outer circum-
ference. The difference between the two phases is proportional to the flux
enclosed by the ring:

- -t -l dS = 11—

(B: magnetic field and S: area enclosed by ring). Hence

S
T("("'m)=|tl +1 l2=7i+T2+21/IiT2 cos(lelhB +¢)

where Ty =4 * t;; T, =, * t;; @ = Phase(t; * £;). Assuming T1 = T2 =T,

[el:S + ¢) (38.3)

T(n(-—m)=2To+2Tocos(

Thus the transmission from one mode in the left lead to one in the right
lead oscillates as a function of the magnetic field. This leads to the oscil-
lations in the conductance mentioned earlier. We will discuss this further
in Section 5.4.

One small point. Actually # and ¢, as defined above do not really ex-
haust all possible paths from m to n. Depending on the nature of the
‘beam-splitters’ at A and B there will be more complicated paths such as
one that goes through the upper arm, transmits into the lower arm at B,
gets reflected back into the lower arm at A and then exits into mode » at
B. These paths would contribute to higher order oscillations that could be
classified as #/Ne effects, N being an integer (2, 3, ...). Experimentally
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the higher order effects are increasingly more difficult to observe because
they involve longer path lengths and it is difficult to maintain phase co-
herence over the entire path. The i#/Ne effect involves a path length of NL
(L: length of one arm), so that its amplitude is reduced by a factor
exp(-2NL/Ly).

Regarding the name ‘Aharonov—-Bohm effect’, it should be mentioned
that Aharonov and Bohm originally proposed an experiment to show that
observable effects could result from potentials (scalar or vector) even
though the fields (electric or magnetic) were zero in the path of the elec-
trons (see Phys. Rev., 1185, 485 (1959)). The solid-state experiments which
go under the name ‘Aharonov-Bohm effect’ (to be discussed further in
Chapter 5) do not really demonstrate this since the magnetic fields used
in these experiments are uniform everywhere. Their similarity to the orig-
inal ‘Aharonov—Bohm effect’ lies in the use of a magnetic field to intro-
duce a phase to the probability amplitudes associated with various paths.

Summary

In Section 3.1 we related the transmission function to the S-matrix and
used the unitarity of the S-matrix to derive useful sum rules for the trans-
mission function. In Section 3.2 we discussed how the S-matrix of a large
conductor can be obtained by combining the S-matrices of the individual
segments that comprise it, assuming complete coherence, partial coher-
ence or complete incoherence among the segments. In Section 3.3 we
introduced the concept of Green’s functions. We then derived the follow-
ing expression relating the S-matrix to the Green’s function (Section 3.4):

Sum = ~Bum + VsV [ [ %,00)| G 03y ) o O )yadys  (3:4.6)

where the (real) function x,(y,) describes the transverse profile of mode
m in lead p and v, is its velocity.

In Section 3.5 we showed how a discrete representation in real space
could be used to calculate the Green’s function G®. Using this approach
we showed that a conductor with infinite leads can be replaced by a finite
conductor with the effects of the leads incorporated through a self-energy
function =*:

G® =[EI - He - Z*]" (3.5.17a)

where Hc is the Hamiltonian for a finite-sized isolated conductor. The
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self-energy function is non-zero only for the points on the conductor that
are adjacent to a lead. It can be written as

R - 222 where Z3(i, j) = t’gR (pi, pj) (3.5.17b)
p
where g} is the Green’s function for the isolated lead p given by
1 .
& (iop)) = =7 3, X (P exp[iknal, (1) (35.18)

Finally we derived an expression for the transmission function in terms of
the Green’s function and the self-energies:

Tp = Te[[,G* T, G| (3.5.20)

LGN =i[Z36.)-26)]= 3w 22 xu(p)  B520)

All quantities in the above equations are defined at points inside the con-
ductor. They represent matrices of dimensions (C x C) if there are N lat-
tice sites inside the conductor. The only exception is the function
gr (pi,p;) which represents the Green’s function for the isolated lead p, p;

CONDUCTOR

A conductor with two or more leads p and g connected to it. A point in lead p is
labeled p; if it is adjacent to point i inside the conductor.

and p; being points on this lead that are adjacent to points i and j inside
the conductor as shown in the above figure.

This formulation is practically convenient because the infinite leads
have been entirely eliminated. However, it also serves to introduce the
very important concepts of ‘self-energy’ and spectral function which are
widely used to describe the interaction with phonons and other electrons
(Section 3.7). It also provides a convenient starting point for relating to
other approaches that are widely used in the literature, namely the Kubo
formalism and the transfer Hamiltonian formalism (Section 3.8). Finally
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we ended this chapter by discussing the concept of ‘Feynman paths’
which often provides useful physical insight into the factors that influence
the Green’s function and hence the S-matrix and the transmission func-
tion.

Exercises
E31
d, d, d,
———PX————p
B )
Hp

Fig. E.3.1. Single-moded waveguide with one scatterer as in Fig. 2.3.1, but with a
probe attached to measure the potential before the scatterer.

In Section 2.3 we discussed the potential variation inside a conductor
with a single scatterer. Instead one could ask the question: what is the po-
tential measured by an external probe connected as shown in Fig. E.3.1
(see H. L. Engquist and P. W. Anderson, (1981), Phys. Rev. B, 24, 1151
and M. Biittiker (1989), Phys. Rev. B, 40, 3409)?

Assume that the scatterer is described by the (2 x 2) scattering matrix

iVvi-T T
NT  iWi1-T

while the probe is described by the (3 x 3) scattering matrix

a b e
b a e| where c=~1-2¢ a=(l-cy2 b=-(+c)2
Ve Ve ¢

This scattering matrix does not include the phase-shifts kd, and kd; due to
propagation.
(a) Use Eq.(2.4.4) to show that the piobe potential up is given by

.- Toy + Tea a2
Tp1 + T2

in order that the probe current be zero.
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(b) Sum the ‘Feynman paths’ as described in Section 3.2 to obtain the
transmission probabilities Tp; and Tp,, with and without interference ef-
fects.

(c) Calculate the probe potential up with and without interference effects,
setting 1 =1 and u, = 0, assuming weak coupling (& — 0). How does
this compare with what we have shown in Fig. 2.3.1?

E.3.2 Derive Eq.(3.3.15) for the Green’s function of an infinite wire using
the eigenfunction expansion (Eq.(3.3.17)).

E.3.3 Show that the Green’s function for a semi-infinite lead p can be
written as

1 .
& (P, p;) = ";2 Xm(P)exp[+iknalx, () (3.5.18)
where the index m represents the propagating modes in lead p.

E.3.4 Starting from the expression for the S-matrix elements

B/ VsV
Snm = —~Om + '_a—ffxn(YG)[G;()’q;YP)]Xm()’p)d}’qd}’p
derive the expression for the transmission probability:

T, = Tt[I, G* T, G*] (3.5.20)

E.3.5 Consider a single-moded wire having a single scatterer with a scat-
tering potential

U(x) = Us 8(x)

(a) Solve the Schrodinger equation directly to show that the S-matrix
elements are given by

2 and sy =+ ihv
ihv - Uo 12 4 ihv - Uo

S =S =

where the velocity v (= hk/m = (2mE)"?/h) is the same in both leads,
since the poteritial is assumed to be the same.

(b) Use the formulation developed in this chapter (namely, Eq.(3.5.17)) to
calculate the Green’s function and then use the Fisher-Lee relation
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(Eq.(3.4.3)) to obtain the S-matrix elements. Compare with the results in
part (a).

E.3.6 Consider a single-moded wire having two scatterers separated by a
distance d such that the scattering potential can be written as

U(x) = Uo[8(x) + 8(x - d)]
(a) Combine the individual S-matrices of the two scatterers (calculated in

the last problem) to show that the transmission probability in this problem
is given by

T(E) _____Ti___
1- 2R cos8 + R}
R el T v e U2
and 0= 2[kd + tan'l(hv/Uo )]

Plot this result in the energy range 0 <FE <250 meV, assuming
Uo=9eVAandd=50A.

(b) Use Eq.(3.5.20) to calculate the transmission numerically as the
lattice constant a is reduced so that the number of lattice points in the
region between the scatterers increases from 1 to 15. How does the result
compare with the result in part (a)?

E.3.7 Consider a single-moded ring as shown in the figure.

A B

Fig. E.3.7. Single-moded ring connected to two leads.

(a) Assume that the 3-way junction at each end is described by an
S-matrix of the form

c e e
Ne a b
Je b a
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where a, b, ¢ and ¢ are all real numbers. Show that in order to ensure the
unitarity of the S-matrix the following relations must be satisfied:

cm=2\1-2¢ am=(-¢c)2 b=(1+c)2

Thus the entire S-matrix can be specified by a single parameter £, which
determines the strength of the coupling of the leads to the ring
(0 < £<0.5).

(b) Combine S-matrices to show that the transmission probability from
one lead to the other is given by

4¢?
T= 2 3
1-2c®cos(28)+c

where 0 is the phase shift along one of the arms of the ring (assumed to
be the same for both arms): 6 = ~2mE (nr/h), where r is the radius of the
ring. Plot the transmission as a function of the energy over the range
0 <E < 0.5 meV for & = 0.025, assuming r = 1000 A.

(c) Use Eq.(3.5.20) to calculate the transmission numerically, taking ap-
proximately 140 lattice points along the ring (corresponding to a lattice
constant a ~ 45 A) and compare with the result in part (b).

(d) Plot the transmission as a function of the magnetic field
(0 < B <0.3T) at an energy corresponding to a peak in part (c).

E.3.8 Starting from Eq.(3.7.2) (rewritten in terms of transverse modes)

2 32
G-2i;ll—2 zv,,.v,.

GR(m,k;n, k)|
h mpkk

show that the conductance of a ballistic conductor is equal to (2¢*/A)M .

E.3.9 Reciprocity: Starting from the definition of the Green’s function
(Eq.(3.5.3)) show that

[6*¢.r)],=[¢*¢.n],

Hence use the Fisher-Lee relation (Eq.(3.4.3)) to prove the reciprocity re-
lation for the S-matrix elements (Eq.(3.1.7)).



174 Transmission function, S-matrix, Green’s functions

Further reading

A very large number of papers have appeared in the literature that calcu-
late the transmission properties of small conductors. We have cited a few
papers in the text that should provide a citation trail for the interested
reader. The very brief introduction to Green’s functions in Section 3.3 can
be supplemented with standard texts such as

[3.1] Inkson, J. C. (1984), Many-body Theory of Solids, (New York,
Plenum). See Chapter 2.

[3.2] Economou, E. N. (1983), Green’s Functions in Quantum Physics,
Springer Series in Solid-state Sciences, vol.7, (Heidelberg, Springer-
Verlag).

[3.3] Schiff L. I. (1968). Quantum Mechanics, Chapter 9, Third Edition,
(New York, McGraw-Hill).



4
Quantum Hall effect

4.1 Origin of ‘zero’ resistance
4.2 Effect of backscattering

One of the most significant discoveries of the 1980s is the quantum Hall
effect (see K. von Klitzing, G. Dorda and M. Pepper (1980), Phys. Rev.
Lett., 45, 494). Normally in solid state experiments, scattering processes
introduce enough uncertainty that most results have an ‘error bar’ of plus
or minus several per cent. For example, the conductance of a ballistic
conductor has been shown (see Fig. 2.1.2) to be quantized in units of
(h/2€%). But this is true as long as we are not bothered by deviations of a
few per cent, since real conductors are usually not precisely ballistic. On
the other hand, at high magnetic fields the Hall resistance has been ob-
served to be quantized in units of (h/2e?) with an accuracy that is
specified in parts per million. Indeed the accuracy of the quantum Hall ef-
fect is so impressive that the National Institute of Standards and
Technology is interested in utilizing it as a resistance standard.

This impressive accuracy arises from the near complete suppression of
momentum relaxation processes in the quantum Hall regime resulting in a
truly ballistic conductor of incredibly high quality. Mean free paths of
several millimeters have been observed. These unusually long mean free
paths do not arise from any unusual purity of the samples. They arise
because, at high magnetic fields, the electronic states carrying current in
one direction are localized on one side of the sample while those carrying
current in the other direction are localized on the other side of the
sample. Due to the formation of this ‘divided highway’ there is hardly any
overlap between the two groups of states and backscattering cannot take
place even though impurities are present.

175
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We will start out in Section 4.1 with a general discussion of the factors
that lead to zero longitudinal resistance and consequently the quantiza-
tion of the Hall resistance. We then discuss (Section 4.2) some of the
surprising experiments in the quantum Hall regime reported in the late
1980s where controlled amounts of backscattering are deliberately intro-
duced.

4.1 Origin of ‘zero’ resistance

We know that at high magnetic fields the longitudinal resistance
(measured using a macroscopic Hall bridge) oscillates as a function of
the magnetic field (see Fig. 1.4.2). As we discussed in Section 1.5 the
density of states at high magnetic fields develops sharp peaks spaced by
hw. (see Fig. 1.5.1) and the resistivity oscillates as the position of these
peaks is changed relative to the Fermi energy. This can be done either by
changing the magnetic field as shown in Fig. 1.4.2 or by keeping the
magnetic field fixed and changing the electron density (and hence the
Fermi energy) by means of a gate voltage. Indeed the first experiment re-
porting the quantum Hall effect was performed on a silicon inversion
layer as a function of the gate voltage at a magnetic field of B = 18 T.

Intuitively it might appear that the resistance should be a minimum
whenever the Fermi energy coincides with a peak in the density of states,
that is, with a Landau level. However, the correct answer is just the oppo-
site. The resistance is a minimum when the Fermi energy lies between
two Landau levels so that the density of states at the Fermi energy is a
minimum! But how does a sample carry any current unless there are
states at the Fermi energy? The answer is that there are states at the
Fermi energy which are located near the edges of the sample. Normally
in wide conductors we tend to ignore the edges since they form an in-
significant fraction of the entire conductor. But these edge states play a
very important role in carrying the current at the resistance minimum as
discussed by several authors (see, for example, B. I. Halperin (1982),
Phys. Rev. B, 25, 2185, and A. H. MacDonald and P. Streda (1984), Phys.
Rev. B, 29, 1616). This is reminiscent of the boundary problems encoun-
tered in calculating the diamagnetism of a free electron gas (see Section
4.3 of R. Peierls (1979), Surprises in Theoretical Physics, Princeton
University Press).

An important point to note from Fig. 1.4.2 is that at the minima the
resistance is very nearly zero. This is particularly surprising since the
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voltage probes are typically spaced by hundreds of microns. The fact that
the resistance is so close to zero shows that the electrons are able to
travel such huge distances without losing their momentum. Clearly
something rather special must be happening at the microscopic level
leading to this fantastic suppression of momentum relaxation processes.

We have already seen in Section 1.6 that as we increase the magnetic
field in a finite-width conductor, the states carrying cutrent in one direc-
tion get spatially separated from the states carrying current in the oppo-
site direction. The result is a significant reduction in the spatial overlap
between the forward and the backward propagating states which leads to
a suppression of backscattering (and hence momentum relaxation).
Indeed at high magnetic fields the forward and backward propagating
states are spatially separated by the width of the conductor and thus have
practically zero overlap in wide conductors.

In Section 1.6 we assumed a parabolic confining potential
U(y) = mw{y*/2. This allowed us to obtain the eigenfunctions of the
Schrédinger equation (see Eq.(1.2.2))

E, +

% +UG) [¥(x,y) = E¥(x,y) (4.1.1)

analytically. A parabolic potential often provides a good description of
narrow quantum wires. But for wide conductors, the transverse confining
potential usually looks more like that shown in Fig. 4.1.1a. In general,
analytical solutions are not available for arbitrary confining potentials.
However, there is an approximate solution that we can use at high mag-
netic fields. It is quite accurate if the cyclotron radius is small enough
that the confining potential can be assumed to be nearly constant on this
scale. Let us start by deriving this approximate result.

Magneto-electric subbands at high magnetic fields
We know that if the confining potential were absent (U(y) = 0) then the
solutions to Eq.(4.1.1) would be given by (see Eqs.(1.6.8a,b))

Woe(x,y) = %eXP[ikx]un(qwk) =|n,k) (4.1.2)

E(n,k)=E, +(n+3})hwe, n=0,12,...
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(@) y Conductor Y A Confining

potenel__—

u(y)

®)

No net current y
Electrons carrying
a net current

Fig. 4.1.1. A rectangular conductor assumed to be uniform in the x-direction. (a)
Sketch of confining potential U(y) versus y. (b) Sketch of the approximate dispersion
relation assuming that the confining potential varies slowly over a cyclotron radius.

where un(q) = exp[—q2/2] H.(9)

qg=+maw/hy and gqi = mw/hy:

H,(q) is the nth Hermite polynomial.
Now let us use lowest order perturbation theory to include the effect of
the confining potential U(y):

E(n,k) ~ Es +(n + })ho. + (n,k|U(y)|n, k)
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Note that each state (n,k) is centered around a different location y = yi
in the transverse direction and has a spatial extent of ~ (#/maw.)">.
Assuming that the potential U(y) is nearly constant over the extent of

each state, we can write

E(nk)~E, +(n+})ho. +U(y) where yi=hk/eB  (4.1.3)

Figure 4.1.1b shows a sketch of the dispersion relation E(n,k) vs. k. It
looks just like the confining potential U(y), with the coordinate y mapped
onto the wavenumber k by the relation y; = #k/eB. In the middle of the
sample the states look just like the Landau levels of an unconfined 2-D
conductor spaced by hw.. Near the edges there are allowed states with a
continuous distribution of energies. These are referred to as the edge
states and they play a very important role in carrying the current at the
resistance minimum.

What is the current carried by an edge state? From Eq.(4.1.3) we can
calculate the velocity:

vn,ky = LIEK) 1 UGr) _15UG) dve 1 UG)
U h ok h ok h dy ok eB o

The edge states located at the two edges of the sample carry currents in
opposite directions, since the quantity oU(y)/dy changes sign. The bulk
states too could carry current if there are electric fields in the interior of
the sample due to, say, the Hall voltage. If u; > u, (as shown in Fig. 4.1.1)
then the states below u, are all filled (assuming ‘zero’ temperature) and
essentially in equilibrium, so that they do not carry any net current. Any
net current arises from the filled states between u; and u, (see Fig.
4.1.1b). The resistance of the sample is determined by the rate at which
the electrons in these states can relax their momentum.

The situation is quite similar to that in an ordinary conductor carrying
current. The positive k-states are occupied to a higher quasi-Fermi level
than the negative k-states (see Fig. 1.7.2). The resistance at low tem-
peratures is determined by the momentum relaxation time of the excess
carriers in the positive k-states. What is unusual here is that the states
carrying current in one direction are spatially separated from those
carrying current in the opposite direction. To relax momentum an electron
has to be scattered from the left of the sample to the right of the sample.
This is all but impossible since the overlap between the wavefunctions is
exponentially small and there are no allowed states in the interior of the
sample in this energy range (u; > E > ).
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Fig. 4.1.2. A conductor in the quantum Hall regime. The edge states (two shown in the
figure) carrying current to the right are in equilibrium with the left contact while those
carrying current to the left are in equilibrium with the right contact.

As a result of this complete suppression of backscattering, electrons
originating in the left contact enter the edge states carrying current to the
right and empty into the right contact, while electrons in the right contact
enter the edge states carrying current to the left and empty out into the
left contact. Consequently, the edge states carrying current to the right
are completely in equilibrium with the left contact and have a quasi-
Fermi energy equal to u.. They are unaffected by ur since no electron
originating in the right contact ever makes it to these states. Similarly we
can argue that the edge states carrying current to the left all originate
from the right contact and have a quasi-Fermi energy equal to ugr (see
Fig. 4.1.2):

p=pr and  po = ur

Clearly the longitudinal voltage drop V. as measured by two voltage
probes located anywhere on the same side of the sample is zero, while
the transverse (or Hall) voltage Vi measured by two probes located any-
where on opposite sides of the sample is equal to the applied voltage:

VL =0 and eVH = UL — URr (4148)

Note that this situation arises only when the electrochemical potentials
lie between two bulk Landau levels. If the electrochemical potentials lie
on a bulk Landau level then there is a continuous distribution of allowed
states from one edge to the other. Electrons can scatter from the left of
the sample to the right of the sample through the allowed energy states in
the interior of the sample. This backscattering gives rise to a maximum in
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the longitudinal resistance every time the Fermi energy lies on a bulk
Landau level.

What is the current?
The current can be written down very simply by noting that the situation
is very similar to what we had argued in Chapter 2 for a ballistic conduc-
tor (see Fig. 2.1.1). The number of edge states (which is equal to the
number of filled Landau levels in the bulk) plays the role played by the
number of modes in a ballistic conductor so that we can write (cf.
Eq.(2.1.3))

2
I= TeM(uL - 1g) (4.1.4b)

We could derive this formally as follows (k. and kr are the wavenumbers
corresponding to E = uL and E = ug respectively)

I=2e f—v(n,k)dk 22]'1 1"E(””‘)

b de=%M[HL—HR]
LAY

Hence from Eqs.(4.1.4a, b) we can write down the longitudinal and Hall
resistances:
153 Vu h

Ri=2=0 and Ry=-2%-=
L= YT,

(4.1.5)

Note that a two-terminal resistance measurement would yield the Hall
resistance. Only a four-terminal measurement with voltage probes located
on the same side of the sample yields zero resistance.

Thus whenever the Fermi energy lies between two bulk Landau levels,
the longitudinal resistance is very nearly zero and corresponding to the
zeros in the longitudinal resistance, there appear plateaus in the Hall
resistance (see Fig. 1.4.2). At these plateaus the Hall resistance has the
value

h 25.8128kQ
2e*M 2M

Ry=

where M = number of edge states at the Fermi energy = number of bulk
Landau levels below the Fermi energy. M takes on integer values that
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decrease as the magnetic field is increased. What is impressive is the
striking accuracy (better than one part per million) of this quantization of
Ry that is obtained at high magnetic fields. This phenomenon is known as
the quantum Hall effect (or QHE) and was discovered in 1980. It is
characteristic of 2-D semiconducting films and is not observed in bulk
materials.

Note that the quantized Hall resistance has the same form as the quan-
tized resistance of ballistic conductors (see Section 2.1) with the number
of edge states playing the role of the number of modes. In ordinary ballis-
tic conductors the quantization is not very precise because backscattering
processes are not completely eliminated. But in the quantum Hall regime
we have a ballistic conductor of incredibly high quality due to the spatial
separation of the forward and the backward propagating states. As a result
the quantization is extremely precise.

Application of the Biittiker formula

So far we have not worried explicitly about the voltage probes used to
measure the longitudinal or the transverse voltage drops. We have
assumed that such probes would measure the local quasi-Fermi energy for
the corresponding edge states. The Biittiker formula discussed in Section
2.4 (see Eq.(2.4.4) or (2.5.8)) provides a natural framework for the analy-
sis of multi-terminal conductors taking the probes explicitly into account.
Both the zero longitudinal resistance and the quantized Hall resistance
follow readily from the Biittiker formula, if we postulate that electrons
can travel from one terminal to another without scattering. The transmis-
sion functions can be written down by inspection without any messy cal-
culations of the type discussed in the last chapter. We will assume the
bias and temperature to be low enough that the transmission function is
essentially constant over the energy range where transport occurs. This
allows us to use the linear response formula (Eq.(2.5.8)) without worrying
about vertical flow (see Section 2.7).

Consider an ordinary macroscopic Hall bridge hundreds of microns in
length and in width. We assume that electrons can travel from one termi-
nal to another without momentum relaxation due to the formation of edge
states. Since there is no backscattering, the transmission function T, is
very easy to evaluate. We just have to count the number of current carry-
ing channels that start from terminal p and end in terminal g. For the Hall
bridge depicted in Fig. 4.1.3 having M (=2 shown in the figure) edge
states that carry current around the sample, it is evident that T,, = M
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Fig. 4.1.3. Hall bridge at high magnetic fields showing two edge states at each edge.

Mg

only if (p«<q) is equal to (1< 6), (2« 1), (3«<2), (4« 3), (5<4) or
(6<5). All other transmission coefficients are zero. Neglecting any
backscattering we can write down the conductance matrix (which is pro-
portional to the transmission function) by inspection:

Gp: q=1 g=2 gq=3 g=4 g=5 g=6
p=1 0 0 0 0 0 Gc

p=2 G¢ 0 0 0 0 0

p=3 0 Gc 0 0 0 0

p=4 0 0 Gc 0 0 0

p=5 0 0 0 Ge 0 0

p=6 0 0 0 0 Ge 0
where Gc= 2e;M

We can solve for the terminal currents and voltages starting from
Eq.(2.5.8), which yields a system of six equations. As explained earlier
(see discussion preceding Eq.(2.4.6)) these equations are not independent
and we can choose the voltage at one of the terminals to be zero and
omit the row and column corresponding to that terminal. Setting V4 =0,

L Gc 0 0 0 -Gclv
L -Gc Gc O 0 0 ||V,
Li=| 0 -Gc Gc 0 0 [{ws
Is 0 0 0 Gc 0 ||V
Is 0 0 0 -Gc Gc ||V
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We could invert this matrix as we have done in the past, but it is un-
necessary. We can easily write down the solution to the above set of
equations noting that the currents at the voltage terminals are all zero
(12=13=15=16=0)I

Va=Va=W, Vs=V=0

This is of course precisely what we had assumed, namely, that any volt-

age probe on one side floats to a potential equal to the right contact while
any probe on the other side floats to a potential equal to the left contact.

Also the current is given by

L =GV

so that the longitudinal resistance R, measured between probes 2 and 3 or
between 5 and 6 is zero

V-V V-V

R
YT I,

=0

while the Hall resistance Ry measured between probes 2 and 6 or between
3 and 5 has the quantized value stated earlier (see Eq.(4.1.5)).

-V V-V

R
"L I

=Gc

Does the current flow only at the edges?

We stated above that if u; > u, (as shown in Fig. 4.1.1) then the states
below u. are all filled and do not carry any net current. Any net current
can be calculated from the filled states on the left between u; and u,.
However, this does not mean that current flows only near the edge having
the potential u;. There are currents everywhere in the sample. We could
choose to do our bookkeeping in a different way so that the net current
appears at a different spatial location. We have identified all the states
below u, (note that y; > u,) as our Fermi sea which does not carry any
net current. Consequently the net current is carried by electrons in the
edge states on one side of the sample with energies lying in the range
1> E > ;. But we could just as well identify all the states below u; as
our Fermi sea. The net current would then be carried by the holes occupy-
ing the edge states on the other side of the sample!

We mentioned in Section 1.7 that while the conductance at low
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temperatures is a ‘Fermi surface property’ the conductivity may not be. A
quantum Hall conductor provides a very good example of this. At low
temperatures the current is carried by the states near the Fermi energy.
States lying deep inside the Fermi sea have no effect on the conductance.
But the local current density due to these states is not zero. These states
give rise to circulating currents in the sample even at equilibrium. An ap-
plied electric field can induce a change in this circulating current flow
pattern thus contributing to the conductivity tensor defined by the relation
8J = odE. Thus electrons deep inside the Fermi sea can contribute to the
conductivity, even though they do not contribute to the conductance.

Why should the Fermi energy ever lie between Landau levels?

The above discussion shows that the longitudinal resistance can be ex-
tremely small if the electrochemical potentials u; and u, were located
between bulk Landau levels as shown in Fig. 4.1.1. This requires that the
equilibrium Fermi energy E: must be located between the Landau levels
since at low bias y; ~ iz ~ E;. How is the location of E; determined?

At low temperatures we can write

Ee

ns = st(E,B)dE

where n, is the electron density and N is the density of states. The elec-
tron density increases with the Fermi energy as shown in Fig. 4.1.4. The
important point to note is that the electron density increases rapidly
whenever the density of states is high. This is because a change in the
electron density is related to the change in the Fermi energy by the rela-
tion

6”8 - Ns(EfaB)aEf

ng
A
High density

/ of states
’ Ef

Fig. 4.1.4. Electron density vs. Fermi energy. Note that the electron density changes
rapidly whenever the density of states is high.
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As a result it is extremely unlikely for the Fermi energy to be located in a
region where the density of states N is very small. A slight change in the
electron density would cause a large shift in the Fermi energy. The Fermi
energy thus tends to be pinned to energies where the density of states is
high.

From this point of view we would expect the the Fermi energy to be
pinned to one Landau level or another, where the density of states is high.
If this were true then the low resistance condition discussed earlier would
never be observed since the Fermi energy would never be located be-
tween two Landau levels. This is not a problem in narrow conductors
where the edge states provide a significant density of states between the
Landau levels. But in wide conductors the edge states represent a negli-
gible fraction of the total density of states. How can the Fermi energy in a
wide conductor ever lie between the bulk Landau levels, leading to the
low resistance condition that we have been discussing?

It is believed that in practice the density of states between two Landau
levels is quite significant because real samples have potential
fluctuations leading to the formation of localized states (see for example
the introductory article in Ref.[4.3] by Prange). This can be understood by
noting that potential fluctuations in the interior of the sample lead to the
formation of local equipotential contours that close on themselves as
shown in Fig. 4.1.5a. Since cyclotron orbits drift along equipotential con-
tours they get stuck at these spots forming localized states. These states
do not contribute to the current flow but they help stabilize the Fermi
energy between Landau levels by providing a respectable density of
states between Landau levels as sketched in Fig. 4.1.5b.

Fractional quantum Hall effect
We have seen that in the quantum Hall regime the Hall resistance takes
on quantized values given by

k. 258128k
2¢*M M

Pyx

where M is an integer. Actually at high fields the energy levels for the
two spins split apart due to the Zeeman effect and quantized plateaus are
obtained with

h 25.8128kQ
M M

Py =
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Fig. 4.1.5. (a) Potential fluctuations in the interior of the sample lead to local
equipotentials where cyclotron orbits get stuck forming localized states. (b) These
localized states help stabilize the Fermi energy between Landau levels.

When the magnetic field reaches a value such that the electron density
n, = eB/h, we will have all the electrons in a single Landau level with
one spin. For a carrier density of n, = 2 x 10""/cm?, this requires a field of
about 8 T. What happens if we increase the field further?

From our earlier discussion we might expect that there will be no fur-
ther plateaus with increasing magnetic field since the Fermi energy now
lies in the middle of a Landau level (the last!). Experimentally, however,
in very pure samples one continues to observe plateaus in the Hall resis-
tivity given by

h  25.8128kQ

Pr="5"=
ep p

where p is a rational fraction like 4, %, 4 etc. This is referred to as the
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fractional quantum Hall effect (or FQHE) to distinguish it from the
integral quantum Hall effect (or IQHE) that we have been discussing, The
FQHE arises from the formation of a novel many-body ground state (see
R. B. Laughlin (1983), Phys. Rev. Lett. 50, 1395) whose quasiparticle
excitations are very different from what we expect from the simple one-
particle picture that we have been using to describe the IQHE. We refer
the reader to the references cited at the end of this chapter and also to the
book by T. Chakraborty and P. Pietilainen (1988), The Fractional
Quantum Hall Effect, (New York, Berlin, Heidelberg, Springer-Verlag).

4.2 Effect of backscattering

So far we have assumed that there is no backscattering so that each edge
state has a transmission probability of 100%. Once we make this assump-
tion, zero longitudinal resistance and the quantized Hall resistance follow
naturally from the Landauer—Biittiker formalism. However, the real power
of this formalism lies in providing a clear description of the many exper-
iments in the quantum Hall regime reported in the late 1980s where
controlled amounts of backscattering are deliberately introduced. Indeed
this is one of the most elegant applications of the Landauer—Biittiker
formalism.

Suppose a split gate is used to pinch off the Hall bar (between probes 2
and 3, see Fig. 4.2.1) so that only N (N < M) edge channels can propa-
gate through the constriction, then the remaining (M — N) channels will
be completely backscattered. The net current from left to right is given by

2e 2e* .
L= —h—N(uL - Ur) = —h—NVl (setting 1 = eV; and ug = 0)

Fig. 4.2.1. Hall bridge with split gate structure used to backscatter one edge channel
while the other can transmit.
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We can write the current as

22
b= =~ MVi(l-p)

- M -N No. of backscattered channels
M Total no. of channels

where

The contact 2 ‘sees’ only the channels originating from the left having
a potential ur, while the contact 5 ‘sees’ only the channels originating
from the right having a potential yg.

H2=eVi and us=0
The contact 6 ‘sees’ (M — N) channels that originate from the left and

have a potential 1 and N channels that originate from the right and have
a potential ur. Consequently it floats to a potential of

.- (M - N)p + Nur
M

[z =eVip

Similarly the potential at contact 3 is given by

Ny +(M -
s = uL+(M Npr _ v

(1-p)

Hence the longitudinal resistance R, measured between probes 2 and 3 or
between 5 and 6 is given by

RL=‘—/1‘£- ’2’ .L -L i_i (4.2.1)
L 2M|1-p

This ‘fractional quantization’ of the longitudinal resistance has been ob-
served experimentally. The Hall resistance Ry measured between probes
2 and 6 or between 3 and 5 is unchanged from its usual quantized value:

Vil-p) __h
Ru= - 422
" I 2’M (4.22)

Application of the Biittiker formula

The above results follow quite readily from the Biittiker formula which
takes the voltage probes explicitly into account. The conductance matrix
can be written as
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Gpy: q=1 q=2 q=3 qg=4 qg=>5 q=6

p=1 0 0 0 0 0 Ge
p=2  Gc 0 0 0 0 0
p=3 0 (1-pGc 0 0 pGe 0
p=4 0 0 Gc 0 0 0
p=5 0 0 0 Ge 0 0
p=6 0 pGe 0 0 (@1-pGc O

Hence from Eq.(2.5.8) (setting V. =0 and leaving out the rows and
columns corresponding to terminal 4 as we did before)

I Gc 0 0 0 -Gc1V
y o3 -Gc¢ Gc 0 0 U IA
Lli=| 0 -(1-p)Gc Gc -pGc 0 v
Is 0 0 0 Ge 0 ||Vs
I 0 -pGc 0 -(1-p)Gc Gc ||Vs

As before it is straightforward to write down the solution, noting that the
currents at the voltage terminals are all zero (I = Is =Is = I = 0):

‘/2=‘/1) ‘/5=0, V3=(1—P)Vl, Vﬁ=PVl

and L= Gc(l - p)Vl

Egs.(4.2.1) and (4.2.2) follow readily, noting that

RV _ VW
I 5L
_V-% _B-V

R
"L I

Disordered contacts

The fact that the Hall resistance is unaffected by the backscattering (see
Eq.(4.2.2)) may seem obvious. After all, contacts 2 and 6 are located hun-
dreds of microns away from the split-gate scatterers. Surely the effect of
the scatterers cannot be felt so far away! However, experimentally it has
been observed that often the Hall resistance too is affected by the split
gates. This can be understood if we postulate that there is no communica-
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I

Al

Fig. 4.2.2. Same as Fig. 4.2.1 but with contact 6 ‘disordered’.

defect

tion among the edge states on the same side of the sample and the con-
tacts do not communicate equally with all the edge states. For example,
suppose there is a defect or an impurity near contact 6 such that it only
‘sees’ the outer edge states and the remaining edge states bypass it and
go directly to contact 1 (see Fig. 4.2.2).

We would then expect contact 6 to float to a potential equal to ur = 0,
instead of eVp as we had reasoned earlier. Consequently the measured
Hall resistance is given by

ooV W% —};—— instead of ——
11 11 2e M1- 14 26 M
and is affected by the presence of the split-gate structure through the fac-
tor p. Note that this is only true if the edge states on the same side of the
sample do not communicate with each other. If they do communicate,
then they will tend to equilibrate and thereby acquire a common average
potential equal to eVi(1 - p). Even if contact 6 ‘sees’ only one of the
edge states it will register this average potential, so that the measured
Hall resistance will be independent of p. The fact that the measured Hall
resistance is affected by the split gate shows that there is lack of equili-
bration between edge states on the same side of the sample. These results
(as well as those for other types of disordered contacts) can be obtained
readily from the Biittiker formula, as shown in Exercises E.4.1 and E.4.2 at
the end of this chapter (see also Refs.[4.1], [4.2]).

Non-ohmic behavior of Ry,

We know that when the Fermi energy lies on a bulk Landau level, the
edge states are backscattered through the bulk level to a state on the
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Fig. 4.2.3. Measured resistivity in two silicon field-effect transistors at a magnetic
field of B =12 T as_a function of the gate voltage (which changes the cartier
concentration). The two structures are identical and have the same width W = 40 pm.
The only difference is the distance between the voltage probes: it is 80 um for one
sample and 2880 pm for the other. The resistivity px is deduced from the measured
resistance assuming the ohmic scaling law. The strong discrepancy between the
resistivities in the two samples shows the breakdown of ohmic scaling. The
discrepancy goes away above 4 K. Reproduced with permission from Fig. 2 of R. J.
Haug and K. von Klitzing (1989), Europhys. Lett., 10, 489-92.

other side giving rise to a longitudinal resistance. These are the peaks in
the SdH oscillations as discussed in Section 1.5. We would expect this
peak resistance to scale linearly with the spacing between the voltage
probes in accordance with Ohm’s law. Experimentally it has been shown
that the resistance does not increase linearly (see Fig. 4.2.3).

This non-ohmic behavior can be understood if we postulate that at high
fields (when the Fermi energy lies on a bulk Landau level), it is only the
innermost edge state that is backscattered through the bulk level to a
state on the other side. The remaining edge states can still propagate
hundreds of microns without backscattering. As a result when we make
the distance between two voltage probes longer and longer, the net
backscattering in the region between them does not increase asymptoti-
cally to one. Thus the longitudinal resistance measured between two volt-
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age probes does not increase linearly with the distance between them as
expected from Ohm’s law. Instead it saturates to a maximum value of
(see Eq.(4.2.1) with N=M - 1)

Ry (maximum) = —-_ (L - i)

If we assume ohmic scaling and divide the measured resistance by the
probe spacing to obtain the resistivity, then samples with larger probe
spacing will yield smaller resistivity values as observed experimentally
(see Fig. 4.2.3).

It is really quite surprising that states on the same side of the sample
can travel such huge distances (1000 pm is actually 1 mm and is clearly
visible to the naked eye) without equilibration. This means that even a
sample 1 mm long may exhibit mesoscopic behavior. A number of exper-
iments have been reported by different groups that support this observa-
tion (see, for example, P. L. McEuen et al. (1991), Phys. Rev. Lett, 64,
2062).

Summary

In a two-dimensional conductor at high magnetic fields, the states carry-
ing current in opposite directions are located on opposite sides of the
sample. If the Fermi energy lies between two bulk Landau levels then the
states (at the Fermi energy) are completely decoupled from each other
(see Fig. 4.1.1). This leads to a complete suppression of backscattering
processes resulting in a perfectly ballistic conductor. The longitudinal re-
sistance measured with two probes placed along an edge is zero while the
Hall resistance measured with two probes on opposite sides of the sample
is quantized in units of (h/2e®) with an impressive accuracy that is
specified in parts per million (Section 4.1). In this quantum Hall regime
even conductors with dimensions of the order of millimeters exhibit
‘mesoscopic’ phenomena that cannot be described in terms of a conduc-
tivity tensor. For example, the longitudinal resistance does not scale lin-
early with length according to Ohm’s law (see Fig. 4.2.3); measurements
can be affected by the mere presence of a floating probe even if it is not
used (see Exercise E.4.2); etc. The Landauer—Biittiker formalism provides
a simple framework for the description of such phenomena.



194 Quantum Hall effect

3

O]

defect

Fig. E.4.1. Same as in Fig. 4.2.2 but with terminals ‘3’ and ‘5’ omitted and terminal
‘6’ renumbered as ‘3°.

Exercises

E.4.1 Consider a slightly simplified form of the structure shown in Fig.
4.2.2, as shown in Fig. E4.1.

(a) Write down the conductance matrix for this structure assuming that
there is no communication between edge states as they propagate from
the constriction to terminal 3.

(b) Use the Biittiker formula (Eq.(2.5.8)) to show that the Hall resistance
is given by

-V h 1

R =
T T 2eM1-p

as reasoned in the text.

E.4.2 Consider the same structure as in E.4.1 but with an extra terminal
‘5’ inserted, as shown in Fig. E.4.2.

Fig. E.4.2. Same as in Fig. E.4.1 but with an extra terminal ‘5’ inserted.
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Write down the conductance matrix for this structure and show that the
Hall resistance is now given by
V.-V, h

1 2¢’'M

Ry =

The extra terminal establishes equilibrium between the edge states and
changes the Hall resistance. This is a rather surprising result which has
been observed experimentally. In macroscopic conductors, we do not ex-
pect an extra floating probe (‘5°) to affect the measurement.

Further reading

A detailed review of the work in the late 1980s applying the Landauer-
Biittiker formalism to the quantum Hall regime can be found in

[4.1] Beenakker, C. W. J. and van Houten, H. (1991), ‘Quantum transport
in semiconductor nanostructures’ in Solid State Physics, vol.44, eds. H.
Ehrenreich and D. Turnbull (New York, Academic Press) (see part IV).
[4.2] Biittiker, M. (1991). Chapter in Nanostructured Systems, ed.
M. Reed, Semiconductor and Semimetals, vol.35, p.191.

A discussion of the earlier work on the quantum Hall effect (integer and
fractional) can be found in

[4.3] Prange, R. E. and Girvin, S. M. (1987), eds. The Quantum Hall Effect,
(New York, Springer).

[4.4] Chakraborty, T. (1992), ‘The quantum Hall effect’, in Handbook on
Semiconductors, Chapter 19, ed. P. T. Landsberg (Amsterdam, New York,
Oxford, North-Holland).
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Localization and fluctuations

5.1 Localization length

5.2 Weak localization

5.3 Effect of magnetic field

5.4 Conductance fluctuations

5.5 Diagrammatic perturbation theory

According to Ohm’s law, the resistance of an array of scatterers increases
linearly with the length of the array. This describes real conductors fairly
well if the phase-relaxation length is shorter than the distance between
successive scatterers. But at low temperatures in low-mobility samples
the phase-relaxation length can be much larger than the mean free path.
The conductor can then be viewed as a series of phase-coherent units
each of which contains many elastic scatterers. Electronic transport
within such a phase-coherent unit belongs to the regime of quantum diffu-
sion which has been studied by many authors since the pioneering work of
Anderson (P. W. Anderson (1958), Phys. Rev. 109, 1492). In this regime,
interference between different scatterers leads to a decrease in the
conductance. For a coherent conductor having a overall conductance
much greater than ~ (e*/k) or 40 pQ~', the decrease in the conductance is
approximately (e*/h). Such a conductor is said to be in the regime of
weak localization (Section 5.2). This effect is easily destroyed by a small
magnetic field (typically less than 100 G), so that it can be identified
experimentally by its characteristic magnetoresistance (Section 5.3). This
is a very important effect, because unlike most other transport phenomena
it is sensitive to phase relaxation and not just to momentum relaxation.
Indeed the weak localization effect is often used to measure the phase-
relaxation length.

196
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The weak localization effect was discovered in the early 1980s in
two-dimensional conductors having dimensions much greater than the
phase-relaxation length. In the late 1980s, it became possible to study
conductors having dimensions less than the phase-relaxation length. In
such conductors, fluctuations ~ (e*/h) are observed in the conductance as
a function of magnetic field or electron density, which are believed to be
due to the modification of the random interference pattern between the
scatterers. These fluctuations cannot be observed in large conductors
because they are smoothed out by the averaging over many phase-
coherent units (Section 5.4).

Throughout this chapter we have tried to convey the basic concepts
using simple heuristic arguments. We end in Section 5.5 with a detailed
quantitative theory of weak localization. This section is more mathemati-
cal than the rest and could be skipped on first reading.

5.1 Localization length
In Section 2.2 we showed that, if we neglect all interference between

successive scatterers, the transmission probability 7(L) through an array
of length L goes down inversely with length:

Ly

T(L) =
()L+L0

where L, is of the order of a mean free path. This ensures that the resis-
tance of an array of scatterers increases linearly with the length of the
array in accordance with Ohm’s law:

11-1ay L

T L (.1.1)

(L) =

We are using p to denote the resistance normalized to (h/2¢%).

What happens if we include quantum interference effects? The deriva-
tion of a quantum version of the ohmic scaling law (Eq.(5.1.1)) is concep-
tually more complicated. This is because the quantum mechanical resis-
tance of an array of scatterers is not determined simply by the number of
scatterers (that is, the length L of the array). Because of interference
effects it also depends on the electron wavelength and the scatterer
configuration. For this reason the quantum resistance p(L) can be defined
meaningfully only if we ensemble average over many conductors having
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the same number of scatterers, but arranged differently. This can be done
analytically for a single-moded conductor (M = 1) as discussed below.

Quantum scaling law for a single-moded conductor

We know that if we have two scatterers (with transmission probabilities
T, and T) in series, the transmission probability T through the combina-
tion is given by (see Eq.(3.2.4))

|2 - yive)
1-2{RiR; cosf + RiR;

T=|t (5.12)

where 0 is the phase shift acquired in one round-trip between the scatter-
ers. Using Eq.(5.1.2) we can write the ensemble-averaged resistance of
two scatterers in series as ({...) denotes ensemble-averaging):

1-T 1 1+R1R2-—TiT2-2«/R1R2 cos@
Pu = = | — de
T 2 T
- 1+RR-TT;
ive)

Defining the resistances of the individual scatterers as

—5 and p2_1—1‘2

1 2

1
Pl-

we can write Pz=p+p2+2002 (5.1.3)

To obtain an expression for the resistance as a function of the length,
consider what happens if we add a short section of length AL to a section
of length L. We then have

pr=p(L) and p, =(AL/Lo)
so that from Eq.(5.1.3)
P(L+ALY=p(L)+[1+ 2p(L)]%

which yields the differential equation

dp _p(L+AL)-p(L) _1+2p
dL AL Lo
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The solution to this equation is easy to write down (R. Landauer (1970),
Philos. Mag., 21, 863)

p(L) = %[e““* -1] (5.1.4)

This derivation looks quite straightforward but there are subtle issues that
we have glossed over. For example, if we ensemble-average the transmis-
sion probability directly we obtain from Eq.(5.1.2)

(T) = LT d0 __Th
f 1-2RiR; cos@ +RiR; 2n  1-RiR;

1-(T) 1-T 1-T
= +
(T) T .

so that

If we were to define the resistance as

p= 1—# instead of <1:TI>

we would obtain an ohmic scaling law:
Ppz=p+p2 = p(L)=L/L,

Thus a proper derivation of a quantum scaling law must also address the
question of what quantity one should find the average value of. We refer
the reader to Ref.[5.3] for a thorough discussion of these issues.

Quantum resistance of a multi-moded wire

Eq.(5.1.4) states that if a single-moded wire is long enough, its resistance
will increase exponentially with length, rather than linearly as we would
expect from Ohm’s law. But is this a special result for single-moded wires
or can it be observed in multi-moded wires as well? It was shown by
Thouless (see Phys. Rev. Lett., 39, 1167 (1977)) that even a multi-moded
wire would exhibit this behavior, if it is long enough that its resistance
is ~ (h/2¢€%). From Eq.(5.1.1) we can see that this requires the length to
exceed ML,. This is known as the localization length, L..

L. = ML, (5.1.5)

Once the length of a phase-coherent wire becomes comparable to L. the
resistance will increase exponentially with length.
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This is really rather surprising. Does it mean we could not transmit
power via copper wires beyond a certain length? Not really. The key word
here is phase-coherent. A real wire at a given temperature can be viewed
as an ensemble of little phase-coherent segments each of length L,
(phase-relaxation length). Significant deviations from Ohm’s law are not
expected unless the length (L) of a phase-coherent segment becomes
comparable to the localization length. This is practically impossible in
metallic conductors as we will see below.

Strong and weak localization

A phase-coherent conductor is said to be in the regime of strong localiza-
tion if its length is comparable to the localization length, that is if its
resistance is greater than ~ 12.5 kQ (= h/2¢?) or if its conductance is less
than ~ 80 uQ™! (= 2e%/h). Its resistance then no longer scales linearly
with length and shows large fluctuations if the scatterer configuration or
the electron wavelength is changed.

On the other hand, if the length of a phase-coherent conductor is much
less than the localization length, the conductor is said to be in the weakly
localized regime. In this regime we can write the resistance as
(expanding Eq.(5.1.4) in a Taylor series, with L, replaced by L.)

L

c

L (LY
p(L)~ {L—+(—) ] = patip (5.1.6)
where the first term is the classical resistance and the second term repre-
sents the deviation from Ohm’s law due to quantum interference:

L LY 2
== Ap=|=|=
pa=1-> Ap ( LC) (pcu)

Thus the quantum correction in the resistance is proportional to the square

of the resistance. This means that the quantum correction to the conduc-
tance is a constant:

EEZ—G/;‘— = A[%) =- A—f ~ - (weakly localized regime)

Strong localization requires that the length (L;) of a phase-coherent
segment be longer than the localization length, L. = ML,. For a metallic
conductor the number of modes is of the order of the number of atoms in a
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cross-section of the wire. A wire with cross-section ~ 2000 A x 2000 A
has nearly M = 10° modes, so that even if the mean free path is only 10 A
the localization length is 1mm. The phase-relaxation length is usually
significantly smaller than this, so that there is little danger of a metallic
conductor entering the strongly localized regime. Weak localization,
however, has been observed in very thin metallic wires at very low tem-
peratures (see for example, N. Giordano (1980), Phys. Rev. B, 22, 5635)
and also in thin films (see for example, Ref.[5.6]). In semiconductors on
the other hand the number of modes (M) is much less than that in metals,
so that both weak and strong localization have been observed in 2-D and
1-D conductors.

5.2 Weak localization

Figure 5.2.1 shows the results of a ‘numerical experiment’ where both the
classical and the quantum mechanical conductance are calculated for
a conductor with 30 modes having 600 impurities. The procedure is
basically the same as that described in Section 3.2. The quantum
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Fig. 5.2.1. Results of a numerical experiment illustrating localization and fluctuations.
Calculated conductance of a random array of scatterers as the position of one impurity
(in the middle) is changed. This has no effect on the semiclassical calculation which
does not take phase into account but the results of the quantum calculation fluctuate
about a mean value. Note that the average quantum conductance (Gq) is smaller than
the classical result Gcy by approximately (¢%/A). Also there are fluctuations of the
order of ~ (¢%/h) in the quantum conductance. Reproduced with permission from M.
Cahay, M. McLennan and S. Datta (1988), Phys. Rev. B, 37, 10125.
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conductance is calculated by combining the scattering matrices for
successive sections, each containing one impurity, assuming complete
coherence. On the other hand, the classical conductance is calculated by
combining their probability matrices, assuming complete incoherence. In
both cases (quantum and classical) the Landauer formula is used to
obtain the conductance from the transmission:

2
G- 2%T(Ef)

The calculations are repeated many times as the middle impurity is
moved around. The classical conductance is unchanged since it depends
only on the number of impurities and not on their relative arrangement.
But the quantum conductance fluctuates as the impurity is moved due to
quantum interference effects.

It is apparent from Fig. 5.2.1 that the average quantum conductance is
smaller than the classical result Gci. by approximately (e*/h):

e2

AG =(Ga)~ e ~ - —

This is the ‘weak localization’ effect that we discussed. Note also that the
fluctuations in the conductance are of order ~ (e*/h). Surprisingly, this re-
sult turns out to be independent of the background conductance and has
been observed in a wide variety of conductors in the ‘weak localization’
regime. We will discuss this further in Section 5.4.

Why is the average quantum conductance lower?
To understand why the average quantum conductance is smaller than the
classical value, we start from the Landauer formula:

2 2
- %MT - %M(l -R) (.2.1)

where we have written R for the reflection probability (not to be confused

with resistance). We will be discussing conductors that are many mean

free paths long so that we do not need to worry about the contact resis-

tance. Classically for a resistor of length L, the transmission and reflec-

tion probabilities are given by

= Lo and R= L
L+ L+L




5.2 Weak localization 203

where Ly is a characteristic dimension of the order of a mean free path.
Assuming that the scatterers are isotropic we would expect an incident
electron in mode m to be reflected into all modes n (n = 1, 2,..., M) with
equal probability; that is,

R(m —n) = 1 L
ML+L
When we take quantum interference into account this result still holds on
the average for m = n. But the average probability of reflection back into
the incident mode is doubled from its classical value (we will discuss the
reason shortly):

for n=m

for n=m

This means that the average reflection probability is a little larger than
the classical value:
L 1 L
R) = R(m —n)) = +—
(R) Z< =) = L " MI+Ls

and hence the transmission probability must be smaller than its classical
value by the same amount:

1 L
(To) = Tor -

1
wmTop —— sincel >> L
ML+L, & M 0

Hence from Eq.(5.2.1) we obtain

(Ga) = G - 22~ (5.22)

The numerical experiment (see Fig. 5.2.1) shows a reduction in conduc-
tance that is only half as large as this. We believe that this is because the
conductor is close to strong localization (GcL = 3e?/h). Once GcL drops
below 2e?%/h, the reduction in the conductance must be less than that
predicted by Eq.(5.2.2). Otherwise {Go) would be negative!

Enhanced backscattering

We will now explain why the probability of reflection back into the inci-
dent mode is doubled over its classical value. This enhanced backscatter-
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Fig. 5.2.2. Scattering from an irregular array of scatterers.

ing is a rather general phenemenon associated with electromagnetic
waves as well. When an incident wave is scattered by a random array of
scatterers (see Fig. 5.2.2) we expect the scattered wave to be isotropic.
However, it has been observed that the backscattering is peaked along
the x-axis, that is, in the direction exactly opposite the incident beam.
This enhanced backscattering has been observed directly using laser light
to scatter off a concentrated aqueous suspension of latex microspheres
(see E. Akkermans, P. E. Wolf and R. Maynard (1986), Phys. Rev. Lett.
56, 1471). It was discussed theoretically as early as 1969 in connection
with radar scattering from the clouds (see K. Ishimaru (1978), Wave
Propagation and Scattering in Random Media., Vol .II, p.311. (New York,
Academic Press)).

The enhanced backscattering is usually explained as follows. We have
seen in Section 3.2 that the probability R(m — n) that an incident elec-
tron in mode m will be reflected into mode n is obtained by squaring the
sum of the amplitudes Ap for all possible Feynman paths connecting the
initial and final states (see Fig. (3.2.3)):

R(m = n)=|A(m —n)+ A.(m—>n)+... K
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Fig. 5.2.3. The reflection R(m~»n) from an array of scatterers can be obtained by
squaring the sum of the amplitudes of all possible Feynman paths starting in mode m
and ending in mode n. An example of a Feynman path is shown.

An individual path is visualized as a particular succession of scattering
events at the various scatterers in the array. Figure 5.2.3 shows an
example of a ‘path’ connecting mode m to mode n. The amplitude for this
path is given by (see Section 3.2)

A(m — n) = t(m = m)r(m, — my)t(m2 — n)

exp [i(kmLm + km1Lmy + kmz2Lm2 + knLn )]

where L,, is the length of the section that the electron traverses while in
mode m having a wavevector k,. Since there are numerous possible paths
this is not a very practical way to compute the reflection. A more
efficient way is simply to combine the scattering matrices of different
sections as was done in the numerical experiment. But this description in
terms of paths (which is equivalent to the scattering matrix approach)
gives us insight into the reason for the enhanced backscattering as we
will now describe.

Usually the phases of the various paths are all random and any interfer-
ence effects cancel out on the average. The square of the sum is then
equal to the sum of the squares and we could just neglect the phases and
add up probabilities instead of probability amplitudes. But something
rather special happens when the initial and final states are the same.
Consider any path starting and ending in the same mode m:

m=—m—>m..My1>my—>m

To every such path there is a time-reversed path obtained simply by re-
versing all the arrows:

m-—my —>my...m;—>m —>m
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We could thus group our paths into two sets such that a path ‘1’ belonging
to one set has a time-reversed path ‘1R’ belonging to the other set:

R(m— m) =|(A1+ A2 +..) + (Aig + Aoz +..) ]
-lA +AR |2

where A is the sum of the amplitudes of all the paths in one set and Ay is
the sum of the amplitudes of all the paths in the time-reversed set. It can
be shown that as long as there is no magnetic field, the amplitudes of the
time-reversed paths are equal (A; = Air, A2 = Azr etc.), so that their sums
are also equal: A = Ag. Hence

R(m— m)=4|A[’ (coherent backscattering)

If there were no phase-coherence between A and Ar then we should sum
the squares instead of squaring the sum. The reflection would then be only
half as large:

R(m—>m)=|A['+|Ar'=2/A" (incoherent backscattering)

Thus the perfect coherence between the pairs of time-reversed paths leads
to a doubling of the probability for reflection into the incident mode
R(m — m). Note that this argument could not be used for the probability
of reflection R(m — n) into a different mode n = m. Time reversing a path
contributing to R(m — n) does not give us another path that contributes to
R(m — n); The time-reversed path contributes to R(n — m) which cannot
interfere with the original path since the initial and final states are dif-
ferent.

Decrease in conductivity for large samples

We have seen above that due to coherent backscattering the average
conductance of a phase-coherent sample is reduced by (2e*/h) from its
classical value. This effect is observable even if we make conductivity
measurements on large samples much greater than the phase-relaxation
length. Consider, for example, a long 1-D sample having a width W that
is much smaller than the phase-relaxation length (L,). We could view it
as a series combination of many phase-coherent units, each of length L,
(see Fig. 5.2.4). Within each unit we have enhanced backscattering and
the consequent reduction in the conductivity. But different units act sim-
ply like independent classical resistors and can be stacked up according
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< »

W ese

Fig. 5.2.4. A long 1-D sample (W << Ly can be conceptually divided up into

individual phase-coherent units that behave like independent classical resistors. The

quantum conductance of an individual phase-coherent unit is smaller than the classical
conductance by (2¢%/h).

to Ohm’s law. The conductivity is the same for the entire sample as it is
for a single unit. Since the conductance of each of these units is (2¢°/h)
lower than the classical conductance (see Eq.(5.2.2)), the correct conduc-
tivity oo must be related to the classical conductivity oc. as follows:

oW oaW _

Go) = = 2¢*/h
(Go)= == (2¢%m)
2¢* L
that = -=— = (@1-D 5.2.3
so tha Oq=0c W (1-D) (5-2.3)

To calculate the reduction in the conductivity of a 2-D sample having a
width W that is much larger than a phase-relaxation length, it might seem
that we could simply consider a rectangular phase-coherent unit, whose
sides are each of length L, Noting that the conductance is smaller than
the classical value by (2¢*h) we would obtain for the conductivity

2
Og=0¢cL - 2% (WRONG)
This is wrong. An electron injected in the middle of a 2-D sample does
not diffuse in a rectangular geometry but in a circular geometry (see Fig.
5.2.5). Consequently the correct phase-coherent unit in two dimensions is
a circular conductor as pointed out in Ref.[5.3]. It is straightforward to
show that the conductance G of such a circular conductor is related to its
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J

Fig. 5.2.5. Phase-coherent unit for 2-D localization.

conductivity by the relation (see Exercise E.5.1 at the end of this chapter)

Go— O
ln(Lmax/Lmin)

where L. and L,;, are the outer and inner radii of the circular conductor.
It is natural to identify the outer radius with the phase-relaxation length:
Lyax = L. The inner radius is not so clear-cut. We would expect it to be of
the order of a mean free path, but the precise value does not lead to any
observable consequences (as long as it is unaffected by temperature or
magnetic field). As we will see, a similar ambiguity arises even with the
more quantitative theory discussed in Section 5.5 and it is common to set
Luin = L (mean free path).

For this circular phase-coherent conductor (with Ly.x = L, and
Luin = L) we could argue as before that the conductance should be re-
duced by (2¢%h) due to coherent backscattering, so that

(Ga) = Ga - (2€*/h)

. Toq - JTOCL _ 2
that is, In(Ly/Ln) ~ In(Ly/Ln) (2¢*/m)

2¢?
so that 0q=0c - —In(Ly/Lw)
nh

Noting that Dt = L% and D7, = L, we can write
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2

Oq =0 - ;—hln(r.,,/r,,.) (2-D) (5.2.4)

Electron—electron interactions

It is apparent from Eqgs.(5.2.3) and (5.2.4) that the conductivity correction
due to weak localization depends on the phase-coherence length both in
1-D and in 2-D samples. As the temperature is raised the phase-coherence
length decreases and the effect is suppressed. This has been observed ex-
perimentally. However, there is a separate unrelated effect which also
gives rise to a logarithmic temperature dependent correction to the con-
ductivity in two dimensions. Let us briefly outline what this effect is
about.

An electron is scattered not only by the impurities but also by the other
electrons. Within a one-particle picture we can represent the effect of
the other electrons by including an effective potential U.(r) in the
Schrddinger equation. In the Hartree approximation, this potential is cal-
culated by inserting the electron density into the Poisson equation (in the
spirit of what we did in Section 2.3 when discussing resistivity dipoles).
This potential is temperature dependent and is correlated in a compli-
cated way with the impurity scattering potential. It gives rise to a conduc-
tivity correction that looks just like the weak localization correction (see
Eq.(5.2.4)) but with the phase-relaxation time replaced by an effective
time related to the temperature:

2
60 = — E8 1y MksT (5.2.5)
h Tm

The factor g depends on the Fermi wavelength and the screening length
and is usually positive and of order unity. For a more detailed discussion
of this effect we refer the reader to advanced review articles (such as P.
A. Lee and T. V. Ramakrishnan (1985), Rev. Mod. Phys. 57, 287; B. L.
Al’tshuler and A. G. Aronov (1985), in Electron—electron Interaction in
Disordered Systems, eds. M. Pollak, A. L. Efros (Amsterdam, North-
Holland)).

The point we wish to make here is that due to the close similarity be-
tween the weak localization effect and the interaction effect it is difficult
to separate them, simply from their temperature dependence. Luckily the
first effect disappears rapidly when a small magnetic field is applied
while the latter effect is relatively insensitive to low magnetic fields. This
allows us to distinguish between them.
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5.3 Effect of magnetic field

The unique signature of weak localization is the fact that it can
be destroyed by a small magnetic field. We have seen that pairs of paths
interfere constructively to produce the enhanced backscattering
responsible for weak localization (Fig. 5.2.3). How is this constructive
interference affected by a magnetic field? This is difficult to see in terms
of the mode representation that we used in the last section. The reason
is that the effect of a magnetic field on the transverse modes (see Section
1.6) is relatively complicated. It is much easier to understand the effect of
a magnetic field using a real space representation. The Feynman paths in
real space were derived in Section 3.8 using a series expansion for the
Green’s function (see Fig. 3.8.1). We could construct similar Feynman
paths for the S-matrix elements since they are related to the Green’s
function by the Fisher-Lee relation (see Eq.(3.4.6)).

A typical reflection path is shown in Fig. 5.3.1. It starts in mode m in

Fig. 5.3.1. Feynman paths in real space: the reflection R(m—»>n) from an array of
scatterers can be obtained by squaring the sum of the amplitudes of all possible
Feynman paths in real space connecting two sites i and j adjacent to the lead.

lead p, couples onto a point { in the conductor adjacent to the lead,
follows some path in real space and returns to another point j adjacent to
the same lead and then couples out back to mode n. These paths are
somewhat different from the paths shown in Fig. 5.2.3 which go from one
transverse mode to another. For wide conductors it is easier to see the
effect of a magnetic field in terms of these paths (which could have been
used for the discussion in Section 5.2 as well).

The effect of a magnetic field is stated very simply in a real space
representation. The amplitude connecting two nearby points r; and r; in
real space is modified by a simple phase factor (see Eq.(3.5.9b)):

t— texp[ieA.(r,- -1 )/h]

Thus the amplitude associated with any path P acquires an additional
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phase proportional to the line integral of the vector potential along that
path.

Ap — Ap exp[%_}[A.dll

For a closed path the phase factor is proportional to the magnetic flux
passing through the area Sp enclosed by the path:

ie
—§Ad
o

Ap — Apexp = Ap exp [% BSP]

Hence we can write

Ap(B) = Ap(0)exp(-i27B/By)

where Bp is a characteristic magnetic field that depends on the area
enclosed by the path P:
2nB

lelg,p_228 _

- 5.3.1
n B oS ©-31)

The phase acquired by the time-reversed path Af(B) is just the negative
of that acquired by Ap(B)

AR(B) = Ap(0)exp(+i27 B/Br )
so that the total amplitude becomes

Ap(B) + AF(B) = 2Ap(0)cos(27B/Br) (5.3.2)

Thus the net amplitude of a pair of paths changes in an oscillatory man-
ner with magnetic field, the period of the oscillation being different for
each path. The period of the oscillation B is continuously distributed
from some minimum value all the way to infinity, so that the net ampli-
tude

A=Y 24¢(0)cos(2nB/Br)

decreases monotonically with magnetic field. The critical magnetic field
B.needed to destroy the coherent backscattering is approximately equal
to the smallest period Bp

B. ~ Bp(minimum)
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and is determined by the coherent paths enclosing the largest area Sp. For
a sample having dimensions much greater than the phase-relaxation
length we have

h

B.~ -
* |elSp(maximum) ||}

~40GifL, ~1um

A detailed theory of the precise functional form of the magnetoresistance
requires advanced concepts that we will discuss in Section 5.5.

One small point. The reader may be bothered by the fact that the
Feynman path depicted in Fig. 5.3.1 starts and ends at different lattice
sites i and j and yet we have been treating it as a closed path. This can
be justified by noting that the line integral of the vector potential along
the straight line joining i and j is zero. As discussed in Section 2.6, we
always choose a gauge such that the vector potential points along the
x-direction (that is the direction perpendicular to the lead—conductor inter-
face).

Experimental results

Figure 5.3.2 shows the measured fractional change in the resistance of a
GaAs sample (n; = 1.6 x 10'/cm?, u = 27000 cm?/V s) as the magnetic
field increases from zero to 140 G. The magnetic field is so low that we

T T
L=210pm 7=0.30K
W=300um

0 35 70 105 140

Fig. 5.3.2. Measured fractional change in the longitudinal resistance of a GaAs sample

having n, = 1.6 x 10"/cm?, u= 27 000 cm*/V s. The solid curves are theoretical fits

with one adjustable parameter, namely, the phase-relaxation length. Adapted with

permission from Fig. 1 of K.K. Choi, D. C. Tsui and K. Alavi (1987),
Phys. Rev. B, 36, 7751.
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do not expect any quantum effects due to the formation of Landau levels.
The 6% decrease in the resistance is due to the weak localization phe-
nomenon described above. The sample used for the experimental result
shown in Fig. 5.3.2 had a conductivity of about 7 x 10~* Q~! so that a 6%
change corresponds to about 40 uQ~' which is approximately equal to

é*/h.

In the range of conductivity we are usually interested in, the effect is a
weak one as the name ‘weak localization’ implies. Nevertheless it is a
very important effect because in contrast to most other transport phenom-
ena, it is sensitive to phase relaxation and not just to momentum relax-
ation. There is a detailed theory (to be discussed in Section 5.5) describ-
ing the precise variation of the resistance with magnetic field which can
be used to fit the measured magnetoresistance curves with just one
adjustable parameter, namely, the phase-relaxation length. Thus weak
localization measurements can be used to measure quite accurately the
distance over which wavefunctions retain their coherence (see Exercise
E.5.2 at the end of this chapter).

It should be mentioned that under certain conditions one can observe a
positive, instead of a negative magnetoresistance, that is, one can ob-
serve anti-localization instead of localization. This effect arises from
spin—orbit scattering but the mechanism is different in metals (see
Ref.[5.6]) and in semiconductors (see G. L. Chen et al. (1993), Phys. Rev.
B, 47, 4084 and references therein).

In quantum wires (or electron waveguides) having a width W that is
much less than the phase-relaxation length, the critical field B. needed to
suppress weak localization is larger:

h

~—2" ~1kG if W~400 A andL, ~1um
|e|WL

B.

This increase in the critical field has been observed experinfentally in
narrow waveguides, Actually in ‘clean’ waveguides, having a width much
less than the mean free path (as well as the phase-relaxation length), the
critical field gets even larger. In general, the phenomena of weak local-
ization and interactions in narrow conductors are less clearly understood
than in wide conductors. One reason is that in quantum wires localization
is intertwined with classical size effects related to boundary scattering,
with quantum size effects, and also with Shubnikov—deHaas oscillations
(see Section 1.5) due to Landau level formation. In wide conductors weak
localization occurs at low magnetic fields (~ 100 G) where other effects
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are absent. Moreover, as we will see in the next section quantum wires
exhibit large conductance fluctuations in a magnetic field which are
absent in wide conductors. We refer the reader to Ref.[5.1] for a detailed
review of our current understanding.

h/2e Aharanov-Bohm effect

From the above discussion it is apparent that if we were to use a cylindri-
cal sample (see Fig. 5.3.3) then all paths would enclose approximately

$s

Fig. 5.3.3. The resistance of a hollow cylinder whose circumference is smaller than
the phase-relaxation length oscillates as a function of the magnetic field.

the same area and would thus have approximately the same period. We
should then see an oscillatory change in the resistance R of the form (r:
radius of the cylinder)

2
R(B) ~ cos’ (—@) =Ly cos( 4rB
Bo 2 BO
instead of the ususal monotonic decrease resulting from the superposition

of many different periods. The period AB of the oscillations is equal to
half of By:

By h

M .96 i re1
2~ 2[e|(@r?) tor=um

This oscillation has been observed experimentally using metal cylinders
(see for example, A. G. Aronov and Yu. V. Sharvin (1987), Rev. Mod.
Phys., 59, 755). Since the flux enclosed by the cylinder (B.ar®) changes
by h/2e over one oscillation cycle this effect is referred to as the h/2e
Aharonov-Bohm effect to distinguish it from the #/e Aharonov-Bohm
effect (to be discussed in the next section). This latter effect can be
observed in individual small rings but it disappears if we average over
many rings. Thus it is not observed in cylinders which can be viewed as a
parallel combination of many rings.



5.4 Conductance fluctuations 215

5.4 Conductance fluctuations

We have seen how the average quantum conductance is always a little
lower than the classical value leading to localization. The quantum con-
ductance is also dependent on the relative positions of the scatterers lead-
ing to fluctuations from one sample to another as shown in the numerical
experiment in Fig. 5.2.1. Experimentally these fluctuations have been ob-
served by studying the conductance of the same sample as a function of
the magnetic field or the electron density. In either case the Fermi wave-
length of the electrons is changed and this changes the phase relation-
ships among the different paths randomly. In a statistical sense this is
equivalent to changing the configuration of the scatterers as was done in
the numerical experiment. Interestingly enough, the size of the conduc-
tance fluctuations is about the same (~2e*/h) in different mesoscopic
samples in the weak localization regime, even though the background
conductance varies over several orders of magnitude.

Size of the fluctuations

To understand why the conductance fluctuations are of order ~ 2e’/h we
start from the Landauer formula and rewrite it in the form

where T is the total transmission and R is the total reflection obtained
by summing over all the input and output modes:

Tw E E T(m — n) (5.4.1a)
R= E 2 R(m— n) (5.4.1b)
It is convenient to define a normalized conductance g as follows:
-T-M-K
8= 2etm

The conductance fluctuates from one sample to another because the total
reflection R fluctuates due to random interference. From Eq.(5.4.1) we
can write

(8)=(T)=M-(R) (5.4.22)
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(g°)=(T*) = M*-2M(R) +(R?) (5.4.2b)
where the angle brackets denote an average over the ensemble of impur-

ity configurations. The fluctuation in any quantity X (=g, R or T) is
defined as

(8x7) = (x°) - (0)°
From Egs.(5.4.2a,b) we can write the conductance fluctuation as
(8g*) = (8T2) = (6R?) (5.4.3)

Next let us determine the fluctuation in R. Eq.(5.4.1b) shows that R is
given by the sum of M? quantities R(m — n) (both the indices m and n
run from 1 to M). Assuming that these M? quantities are uncorrelated we
can write

(8R?) = M*(8R(m — n)?)

Each of the quantities R(m — n) can be written in the form

S
P

where the index P runs over all paths starting in mode m and ending in
mode n (see Fig. 5.2.3 or 5.3.1). If we assume that the phases of the am-
plitudes Ap of all the paths are completely random then

(Ron—=m) = 3 (447 ) = 3 4

P

2

R(m —n) =

while

(Rom—ny)= Y, <AP Ap AN A;:...>

PP P"P"

= ElAP |2|AP' |2[5P,P"5P',P'" +0p,p 61",1’"]

PP P P"
= 2(R(m — n))’
Hence (8R(m — n)*) = (R(m — n))’
For a sample that is many mean free paths long,

(R(m — n)) = 1M => (8R(m —> n)*) = UM* = (8R*) =1
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and consequently the normalized conductance fluctuation is about one:
(8g) ~1 (54.4)

The above argument (which is adapted from P. A. Lee (1986), Physica,
140A, 169) shows in a fairly simple way why the conductance
fluctuations are approximately (2¢/h) in magnitude. However, as pointed
out there, several assumptions regarding the lack of correlations among
different paths have been slipped in rather casually. We would have
arrived at a very different (and wrong!) answer if we had applied a similar
reasoning to the transmission instead of the reflection. The difference
arises because

(T(m — n)) = T/M

T being the average transmission probability per mode which is much less
than one for a sample that is many mean free paths long. Hence

<6T(m - n)2> ~TM? = <6g2> = <6T2> ~T?
and consequently the fractional conductance fluctuation is about 1/M:

—%—Z - % (WRONG)

This is basically the result that most people would have guessed, namely
that the percentage fluctuations should be of order 1/M, M being the
number of modes that carry the current. But the correct answer is that ob-
tained earlier (see Eq.(5.4.4)). As pointed out by Lee, transmission paths
have to run across the entire sample while the reflection paths with the
largest contributions are only a few mean free paths long. Consequently
our cavalier dismissal of correlations among the paths is more suspect for
transmission than it is for reflection. Both localization and fluctuations
are easier to understand in terms of the reflection paths than in terms of
transmission paths. A discussion of the types of correlations that arise
among different transmission paths can be found in Ref.[5.5].

Smoothing of fluctuations in large samples

We have calculated the fluctuations assuming that the entire sample is
phase-coherent. Large samples can be viewed as ensembles of a large
number of phase-coherent units and the fluctuations tend to be reduced or
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smoothed out when measurements are made on macroscopic samples. A
conductor with dimensions ~ 10 um will show hardly any fluctuations but
a conductor with dimensions ~ 0.1 pm will show large reproducible
fluctuations at cryogenic temperatures.

If we have a long sample such that L >> L, (we are assuming that the
width W is much smaller than the phase-relaxation length) then we could
view it as N (= L/L,) resistors in series each having a (normalized) mean
conductance of go and a conductance fluctuation of ~ 1. The fluctuation
in the resistance of each resistor is given by

8(gi") = 28

80
When we add N such resistors in series, the mean resistance g~! is N

times larger while the fluctuation in the resistance is N*? times larger:

8o

g = and 8(g)= ‘W%gzl
0

Hence the conductance fluctuation of the entire sample is given by

bg=g"8(g") = ;fi’z (5.4.5)
Thus the conductance fluctuations are reduced by the number, N, of inde-
pendent coherent units raised to the power 1.5. As the temperature is
raised, the dimensions of a coherent unit (L,) get smaller, N increases
and the conductance fluctuations get smaller.

Another reason for the smoothing of fluctuations at higher temperatures
can be energy-averaging. As we discussed earlier (see Section 1.7) cur-
rent flow takes place over an energy range of a few kg7 around the Fermi
energy. If kT > fi/t,, then this energy range can be viewed as N uncorre-
lated channels in parallel, each channel having a width (in energy) of
hiTy:

Dh

2
where 12 =D1, and I%=—"—
) T @ [ T kT

N= ksT _ (ﬁl
h/T¢ LT

This reduces the conductance fluctuations by a factor of N'? = Ly/L,,

h/e Aharonov-Bohm effect

Earlier in Section 3.8 we used this effect to illustrate the use of the
concept of Feynman paths. This effect is observed in small ring-shaped
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Fig. 5.4.1. A ring-shaped conductor (fabricated in high mobility GaAs-AlGaAs

heterostructure) exhibits periodic oscillations in its resistance as a function of the

magnetic field. The diameter of the ring is nominally 2 pm. (7 = 270 mK). Adapted
with permission from Fig. 2b of G. Timp et al. (1988), Surf. Sci. 196, 68.

conductors of the type shown in Fig. 0.2. We have seen that in such
structures the interference between the two arms of the ring causes the
transmission from one mode in the left lead to one in the right lead to
oscillate as a function of the magnetic field (see Eq.(3.8.3))

T(n < m)=2T1,+2T; cos(' e|:s + (p)

The conductance is determined by the total transmission summed over all
input and output modes. That means we have to add up a total of M?
terms of the form shown above. If we assume that the phases ¢ associated
with every pair of modes m and n is totally random then

_ B
T =22T(m—>n)=>2]bM2+216Moos('e'h S +¢)

where @ is a random phase that will vary from sample to sample. The
conductance is proportional to the total transmission so that:
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- B. G
G =Go+Gcos |eiBS +@ | where &1 (5.4.6)
h G M

0

Thus the conductance changes periodically as the magnetic field is
changed. This is known as the (h/e) A-B effect, since one cycle of oscil-
lation corresponds to a change in the enclosed magnetic flux (= BS) by
(h/e). From the above argument one would expect a fractional change in
the conductance of the order of (1/M), M being the number of modes in
the leads. However, this is wrong because our assumption of complete
lack of correlation among different 7(m—>n) is not correct (see discussion
following Eq.(5.4.4)). Like conductance fluctuations, the conductance
modulation G due to the A-B effect is also approximately ~ (e¥/k) inde-
pendent of Go. Consequently the fractional change in the conductance is
larger in semiconductors (smaller Go) than in metals. Indeed oscillations
as large as 20% have been observed in GaAs—AlGaAs conductors (see,
for example, C. J. B. Ford et al. (1989), Appl. Phys. Lett. 54, 21).

One subtle point. It would seem that the phase angle @ in Eq.(5.4.6)
could have any value from O to 360 degrees depending on the sample.
However, for a two-terminal measurement the phase angle @ can only
have two values: 0 and 180 degrees. This is because reciprocity requires
that if we interchange the voltage and current terminals and reverse the
magnetic field, the measured conductance should remain unchanged (see
Eq.(2.4.12)). In a two-terminal measurement the current and voltage ter-
minals are identical, so that the conductance must remain the same when
the magnetic field is reversed; that is, G(+B) = G(-B). This requires the
phase angle @ in Eq.(5.4.6) to be either 0 or 180 degrees. Actual mea-
surements are usually made with separate voltage and current terminals,
so that G(+B) need not be equal to G(-B). However, such measurements
should be analyzed using the multiterminal formula (Eq.(2.5.7)) rather
than the two-terminal formula G = (2¢/h)T .

Non-locality of mesoscopic resistance

An impressive demonstration of the non-local nature of resistance is
shown in Fig. 5.4.2. Shown side-by-side are the measured magnetoresis-
tance in two identical structures whose only difference is that one has a
ring dangling on one end. In a macroscopic conductor this would have
made no difference since the ring is outside the path of the current. But in
a mesoscopic conductor it clearly makes a difference. Both structures
exhibit similar conductance fluctuations but the one with the ring shows
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Fig. 5.4.2. Magnetoresistance of two similar wires (schematics on top), one of which

has a ring dangling outside the classical path where it ‘should’ have no effect. Both

show aperiodic fluctuations, but the wire with the ring shows additional h/e

Aharonov-Bohm oscillations corresponding to the area enclosed by the ring.

Reproduced with permission from R. A. Webb and S. Washburn (1988),
Physics Today, 41, 46.

additional oscillations superposed on the fluctuations whose period
corresponds to the period expected for (h/e) oscillations in the ring. Since

the ring has a diameter of about 1 pm. the expected period of the (h/e)
oscillations is

B,=—_ =536 if§="(1um)’
lels 4

This corresponds to the high frequency oscillations in the plot on the

right, superposed on the low frequency background which is common to

both plots.

This appears surprising since the ring is outside what we normally view
as the current path. But the point is that every Feynman path within a
phase-relaxation length contributes to the transmission. This is not at all
surprising once we recognize that a phase-coherent conductor is much
like an electromagnetic waveguide. As every microwave engineer knows,
measurements are strongly affected if we leave unnecessary ‘stuff’ hang-
ing around.
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Fig. 5.4.3. Conductance vs. gate voltage (which controls the electron density) in an
MOS field effect transistor at T = 50 mK. Reproduced with permission from Fig. 4 of
A. B. Fowler, J. J. Wainer and R. A. Webb (1988), IBM J. Res. Dev. 32, 372.
Copyright 1988 by International Business Machines Corporation.

Strong localization

We have mentioned earlier that a phase-coherent conductor having a re-
sistance greater than 12.5 kQ is in the strongly localized regime. In this
regime the conductance can fluctuate by several orders of magnitude as a
function of the magnetic field or the electron density as shown in Fig.
5.4.3. It should be noted that in the strongly localized regime electron—
electron interactions are expected to play an important role in determin-
ing the fluctuation spectra. Indeed, recent work has shown that in some
cases, instead of irregular fluctuations, one can obtain regular periodic
oscillations due to electron—electron interactions (see, for example, M. A.
Kastner (1992), Rev. Mod. Phys. 64, 849), similar to the single-electron
charging effect to be discussed in Section 6.3. This is an area of meso-
scopic physics where our understanding is still in the process of evolution.

5.5 Diagrammatic perturbation theory

As we have seen, experimental observations often represent ensemble
averages of quantities like the conductance, where the members of the
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ensemble consist of individual phase-coherent units, each having a differ-
ent distribution of impurities and hence a different scattering potential
U(r). The diagrammatic perturbation theory provides an elegant analyti-
cal method for computing ensemble averages. Qur purpose in this section
is to illustrate this formalism by deriving the weak localization correction
to the conductivity with and without a magnetic field. This section is
mathematically challenging and can be skipped on first reading.
The starting point for our calculations is the relation discussed earlier
in Chapter 3 (see Eq.(3.7.1))
2 £2
om= 2 E va(k)vx(k')<| GR(k,K) |2> (5.5.1)
h L
k'
for the conductivity (at T = 0 K) of a phase-coherent conductor with side
L in d dimensions. We will restrict our discussion to two-dimensional
conductors (d = 2). Note that all the quantities in this expression are
evaluated at the Fermi energy E = E;.

Equation for the Green’s function

Before we can discuss ensemble-averaging, we need to discuss how we
calculate the Green’s function G*(k,k') for an individual (phase-coherent)
member of the ensemble having a particular scattering potential. In
Chapter 3 we showed that the Green’s function is given by (see

Eq.(3.5.17))
G? = [EI - Hc - z*‘]‘1

where Hc is the Hamiltonian operator for the conductor, I is the identity
operator and the self-energy term =X arises from the coupling of the con-
ductor to the leads. In the following discussion we will not worry about
the coupling to the leads explicitly since we are considering an individual
phase-coherent unit in the middle of a large macroscopic sample. Instead
we will just assume a small imaginary term in,

G® =[(E +ing)l - Hc|" (55.2)

to represent the loss of coherence by phase-breaking processes or by cou-
pling to the surroundings. As we will see, the weak localization correction
depends on 7, although the classical Drude conductivity is insensitive to
the precise value of 1.

To calculate the Green’s function G*(k,k') we need to calculate the



224 Localization and fluctuations

inverse indicated in Eq.(5.5.2) using the momentum representation. In the
position representation the Hamiltonian operator is given by (we set the
vector potential to zero assuming there are no magnetic fields)

h2
He = -—V*+U(r)
2m

In the momentum representation
222

Hc(K k) = thl:z

oxx +UK k) (55.3)
where U is the matrix representation of the scattering potential:

. d
U(K k) = (K |U(r)|Kk) =fU(r)exp[—1(k' - k).r]-i—; (5.54)
Note that we are considering square-shaped two-dimensional conductors
of side L; the wavevector takes on discrete values given by

ky=n.(2n/L) and k,=n,(27/L) (n«,n, are integers)

Later we will convert summations into integrals following the usual pre-
scription
= ]’ dk2
4n

Perturbation expansion for the Green’s function
It is easy to see from Eqs.(5.5.2) and (5.5.3) that if the scattering potential
were absent U = 0 and the Green’s function G, would be purely diagonal:

1
E - (WK [2m) + in,

Go(K ,K) =dux

(5.5.5)

In the presence of a scattering potential we can write in matrix notation
[6*]-[es* -u]" (5.5.6)

Next we expand G® in a perturbation series using straightforward matrix
algebra:
G* =[G'[1-GU]" =[I - GoU]" Go
=[I+GoU + GoUGU +...JGo
= Go + GoQGo + G()QG()QGO +...
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kK kK k' k'
= + q t % + e
q1
k k k k
K=k (K=k+q) (K = k+q,+q)

Fig. 5.5.1. Diagrammatic representation of the perturbation series (sce Eq.(5.5.8))
for the Green’s function.

Noting that the matrix elements U(K,K) of the scattering potential de-
pend only on the difference between the wavevectors (k' ~k) we can
simplify the notation a little by defining

Uy,=U,k) where q=k -k (5.57)
and writing the Green’s function as

GR(K ,K) = dxxGo(K) + Go (K YU,Go(K)

(5.5.8)
+ Go(K YWeq,Go(K + Q1 )Uq,Go () + ...

We can depict Eq.(5.5.8) pictorially as shown in Fig. 5.5.1, noting that the
wavevectors must add up so as to satisfy the relations

Ok=K or 2Q)k+q=k or Qk+q+q:=Kk

just like the currents in an electrical circuit.

Statistical properties of the scattering potential

The Green’s function is different for each individual phase-coherent unit
since the scattering potential is different. The ensemble-average is calcu-
lated by averaging over all the phase-coherent units assuming appropriate
statistical properties for the random scattering potential. In particular we

. . L
L L

Fig. 5.5.2. Ensemble-averages are calculated by averaging over an ensemble
of conductors with random impurity potentials. Two members of the ensemble
are shown.
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will assume that the scattering potential has zero mean and is delta-corre-
lated:

UE) =0 ({U®UE)=T28(r-r) (55.9)

From Eqs.(5.5.4) and (5.5.9) it is straightforward to show that
(U‘l> =0 (Uq Utf) = —aq,-q‘ (5510)

The assumption of delta correlation is equivalent to assuming that the in-
dividual scatterers are point-like and hence isotropic. Although impurity
scattering is often anisotropic, we make this assumption in order to sim-
plify the details. For anisotropic scatterers, the quantity (U, Ug) is still
non-zero only for q = —q/, but its magnitude is dependent on q.

Ensemble-averaging

Making use of this property (see Eq.(5.5.10)) of the scattering potential
we can calculate the ensemble-averaged Green’s function by ensemble-
averaging the perturbation series given in Eq.(5.5.8) term by term. For ex-
ample, the second term averages to zero

(Go(KYU4Go(K)) = 0

while the third term averages to a non-zero value only if q; = —q;.

(6o (1)U Gi(k + 42)UGo()) = - Ga(l)Go(k - 4)Go(K)

Diagrammatically we can represent the effect of averaging by connecting
together the scattering lines in pairs as shown in Fig. 5.5.3. Each such line
contributes a factor of

U

to the diagram. Any diagram with one or more free scattering lines (that
is not connected to another) vanishes on ensemble averaging.

Self-energy
It is useful to define a self-energy function Z as the sum of all diagrams
of the type shown in Fig. 5.5.4a, such that any diagram contributing to the
ensemble-averaged Green’s function can be represented by sandwiching
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Fig. 5.5.3. Ensemble-averaging results in tying together the scattering lines in pairs.
(a) Diagrams with two scatterings, (b) diagrams with four scattering lines.

€Y

®) ?Go

A diagram included
in the self-energy

[Go

A diagram included
in the self-energy

A

Fig. 5.5.4 (a) Examples of diagrams included in the self-energy. (b) Any diagram
contributing to the ensemble-averaged Green's function can be represented by
sandwiching self-energy diagrams between free propagators (Go).
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self-energy diagrams between free propagators (Go) as shown in Fig.
5.5.4b, This allows us to express the Green’s function in the form

(G™) = Go + Gy 2Go + Go 2Go ZGo + ..
= Go[I + 2Go +2Go 2Gy +...]
=Go[I-2Go ]!

so that (") =Gt - (5.5.11)

This is known as the Dyson equation.

Note that we must not include diagrams of the type shown in Fig. 5.5.5
when calculating the self-energy. Such diagrams can be expressed in the
form Go2G, and must be excluded from 2 in order to avoid double-

;b

Fig. 5.5.5. Examples of diagrams that should not be included in the seif-energy.

Ensemble-averaged Green’s function

We are now ready to evaluate the ensemble-averaged Green’s function.
The first point to note is that as a result of ensemble-averaging all the off-
diagonal elements of the Green’s function vanish, so that we can express
it in the form

(G* (K, K)) = 8uuG(K) (5.5.12)

This is easy to see from the diagrams shown in Fig. 5.5.3. Ensemble-aver-
aging requires that all scattering lines be paired, that is, every increase in
momentum +q be matched by a subsequent decrease in momentum -q.
Hence the final momentum k' must be equal to the initial momentum k.
Physically we can understand this result by noting that the off-diagonal
elements G*(k',k) arise from the scattering of an electron from its initial
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state k to another state k'. Since the phases of the scattering matrix
elements U(k',k) vary randomly from one member of the ensemble to
another, the ensemble-averaged value of G*(k',K) is zero.

Making use of Egs.(5.5.12) and (5.5.5) we can rewrite Eq.(5.5.11) as

Gag = F 20+ ine - 26K

where e(K) = (h*k*/2m) (5.5.13)
In general, the self-energy function has both real and imaginary parts and

can be expressed as (the subscript ‘el’ is added as a reminder that it
arises from elastic processes)

Z(k, k) = (J| (k) - inel (k) (5.5.14)
o tha (07 0c10) = Bux (E -(e+0u )1+ i(n, + nel)J -349)

The physical meaning of the self-energy function is easily appreciated if
we Fourier transform from energy (E) to time (7):

(GR (k, k')) = dix exp[i(e + 0q )t/h]exp[—(n‘,, +7u )t/h]

Thus the scattering shifts the energy eigenvalues through the real part of
the self-energy (0.), while the imaginary part of the self-energy causes
the Green’s function to decay with time. Physically this is due to the
outscattering of electrons from the initial state k. Some of these electrons
could return later to the initial state through inscattering but they cancel
out on ensemble-averaging because of the random phases. The square of
the ensemble-averaged value of G*(kK)

(6™ K))[" = b expl-2(m, + ma)0in]

represents the fraction of the electrons that have not yet outscattered. This
fraction decays exponentially with time and we could relate the decay
time constant to the lifetime (7) of the state:

1

l-E(n‘,,,+nd)-i+— (5.5.16a)
T h T, Td

As we would expect, the net lifetime is given by a parallel combination
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of the inelastic and the elastic lifetimes. Of course for localization phe-
nomena to be observed the phase-relaxation time must be much longer
than the elastic lifetime so that

N=ENe+Ta~a = TwTa<<T, (5.5.16b)

To calculate the elastic lifetime

To calculate 7., we need to evaluate the self-energy function by summing
up the contributions from diagrams of the type shown in Fig. 5.5.6.

k k
ql
k-q q
k . K
)

@
Fig. 5.5.6. Two self-energy diagrams that are evaluated to yield 2 and £@.

Consider the contribution =@ from the first diagram:
U*? U’
(¢} - > —a) = -
20(k,K) 2 Gk-9) 2 - G(K)
_’712 1
L* & E—(e(K) + oa(k)) +i(1p + 1a(K))

Note that although we are evaluating the first diagram in Fig. 5.5.6, by
using G(K) instead of Go(k) for the propagator lines we are effectively in-

cluding diagrams of the type

as well. Assuming weak scattering, we can make use of the relation (P:

principal value)
1 1
=P — |-ind(x
x+iA P(x) iz(x)
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to obtain Gu(k) = Re[ZV(k k)] = T j IR RN S,
4n* \ E-e(k)-oa(k)

Na(K) = - Im[Z®(k, k)| = 202 Jﬁz— 3[E ~ e(k') - oa(K)]dk

In general the above expressions have to be evaluated iteratively since
the real part of the self-energy appears on the right hand side. But for
weak scattering we can neglect 0. and noting that

f —1—2—6[E - s(k')]dk' - > =>N; (2-D density of states excluding spin)
47 27h

we obtain the standard ‘golden rule’ result:

N = =xU°’N, (5:5.17)

Tel
However, the present formalism allows us to go beyond the golden rule
and calculate higher-order corrections to the lifetime. For example the
second term in Fig. 5.5.6 yields

m—— \2

U2

2Pk k)= (7:2‘) Y Go(k—q1)Go(k— g1 - q2) Go(K— q2)
1,92

Note that this result is of higher order than = in the scattering potential,

so that if the density of impurities is small, the golden rule result is quite

accurate and we will use it for the subsequent discussions.

Drude conductivity
The conductivity formula given above (see Eq.(5.5.1)) requires us to
evaluate the ensemble average of the square of the Green’s function. In
general this is not equal to the square of the ensemble-averaged Green’s
function:

(le*acrf) =] (6 acky)f

However, let us first calculate the conductivity assuming the two to be
equal:

ao=-2;—2§ v,(k)v,(k')’(GR(k,k)Mz (5.5.18)
L &
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Substituting for the ensemble-averaged Green’s function from Eq.(5.5.15)
we obtain

s 28R (hk,)z 1
TTh 24\ m ) (E-e(k)-0(k) +n7(k)

Converting the summation into an integral we obtain

233
ao=eh2fL2k2cosze 0 dadk
am*J 4x°n (E - e(k)-o(k)" +n°(k)

Neglecting o and using the approximation

Ertor e ~E O

it is straightforward to evaluate the integral to obtain oo = e2E/27h1).
Noting that

E=E=——— and
mimh 2t

we obtain the standard Drude result (see Eq.(1.4.2))

(5.5.19)

except for one small point. The Drude conductivity involves the momen-
tum relaxation time while the time 7 appearing above represents the life-
time of a momentum state. For anisotropic scatterers, the two can be
significantly different and we can obtain the correct Drude result only if
we go beyond the approximation involved in replacing Eq.(5.5.1) with
Eq.(5.5.18) (see Exercise E.5.4 at the end of this chapter). However, for
isotropic scatterers (which is what we are considering) the two are identi-
cal and Eq.(5.5.18) yields the Drude conductivity. The difference between
Eqgs.(5.5.1) and (5.5.18) then leads to corrections to the Drude conductiv-
ity such as the correction due to weak localization. This is what we will
discuss next.

Conductivity corrections

The difference between Eq.(5.5.1) and Eq.(5.5.18) arises from replacing
the ensemble average of the square of the Green’s function with the
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= q
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Fig. 5.5.7. Diagrammatic representation of the perturbation series (see Eq.(5.5.8)) for
(a) the Green’s function and (b) the complex conjugate of the Green’s function.

square of the ensemble-averaged Green’s function, so that we can write
the correction to the conductivity as

2—3—%=%w vx(k)vx(k')[<| G kW[ )-|(6* k. k) ]2] (5.5.20)

Let us first try to express the quantity in parenthesis in diagrammatic
terms.
Earlier we derived the perturbation expansion for the Green’s function
(see Eq.(5.5.8)):
GR (K ,K) = duxGo(K) + Go(K)UqGo(K)
+ Go(k')Uquo(k + qz)quGo(k) +...

with k+q=K and k+q+q:=k

and discussed the diagrammatic representation for the series (reproduced

in Fig. 5.5.7a). The complex conjugate of this series is given by (note that
*

Ug=U.q)

GR(K ,K)* = dxxGo(K)" + Go(K)" U_4Go(k)"
+Go(K) U_,Go(K + q2) ' U_q,Go(K)" +...
Diagrammatically we could represent this series as shown in Fig. 5.5.7b,

simply by reversing all the arrows in Fig. 5.5.7a. Note that all the
wavevectors still add up like the currents in an electrical circuit.
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The squared magnitude of the Green’s function
|G* & K)[ = G* (k. K) G* (k. )"

consists of diagrams obtained by multiplying a diagram from Fig. 5.5.7a
with one from Fig. 5.5.7b. Consider for example the diagram obtained by
pairing the third diagram from each (Fig. 5.5.8a). Ensemble-averaging
leads to tying together the scattering lines as discussed earlier. This can

o ¥
T<v q, 9, €—
q q9, 4+—
k 2 4 *k
(b) krb kK k , K Kk k'
k Qk k Ve ok k
O @ S

Fig. 5.5.8. (a) Example of a diagram that contributes to GR(k,k')|2 obtained by
multiplying one diagram from Fig. 5.5.7a with one from Fig. 5.5.7b, (b) ensemble-
averaging leads to tying together scattering lines, giving rise to three possibilities.

be done in one of three ways as shown in Fig. 5.5.8b. If we were to
ensemble average G*(k,k') and G*(k,k')* separately and multiply them,
we would obtain only the first of these diagrams. Thus the second and the
third terms in Fig. 5.5.8b represent the difference between

<| G*(k,K) |2> and |(G*(kK))[

In general the difference between the two terms can be evaluated by

summing diagrams that have one or more scattering lines connecting

G*(k,k") to G*(k,k")*, such as the one shown in Fig. 5.5.9a. Noting that

each such diagram has free propagators G at the two ends, we can write
Ao R

PR ;k v () (B)| GR)[*| G T(R,K)  (5.5.21)

where the diagrams for I'(k,k') are obtained by leaving out the propaga-
tors at the ends as shown in Fig. 5.5.9b.
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@ v o
K %
k k k k

Fig. 5.5.9. (a) Example of a diagram that contributes to the conductivity correction

due to the difference between Eq.(5.5.1) and Eq.(5.5.18). (b) If we leave out the

propagators at the two ends we obtain the corresponding diagram for I'(k k)
in Eq.(5.5.21).

To make further progress we need to evaluate the function I'(k.k') by
summing selected diagrams of the type shown in Fig. 5.5.9b. One group of
diagrams known as the ladder diagrams is shown in Fig. 5.5.10. For
anisotropic scatterers this set of diagrams added to our earlier result
(Eq.(5.5.19)) leads to the correct Drude conductivity (see, Exercise E.5.4
at the end of this chapter). For isotropic scatterers (which is what we are
considering) the ladder diagrams make no net contribution and we will
not discuss them further.

4 k' 4 k'
k' k'
= | 4
k k
k k k k

v

vyy

Yy

Fig. 5.5.10. Ladder diagrams contributing to I'(k, k).

Maximally crossed diagrams
The weak localization correction arises from the diagrams shown in Fig.
5.5.11a, which are often referred to as the maximally crossed diagrams.
These can be redrawn as shown in Fig. 5.5.11b, by reversing the line on

the right. Let us write down the contributions from the diagrams one by
one.

The first diagram consists of two scattering lines and two free propaga-
tor lines, so that its contribution is given by

rOk) = (04L) Y 6k-q) Gk + )"

which can be written as

IOk k) = (T/L%)Adk k)
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Fig. 5.5.11. (¢) Maximally crossed diagrams contributing to I'(k,K), (b) same
diagrams redrawn so as to look like a ladder diagram. Note that the line on the right
has been turned around.

where Ak K) = (T )2 G(k-q)G(K +q)" (5.5.22)

It is straightforward to show that the contributions from the subsequent di-
agrams form a geometric series of the form:

Ik k) = (TY/) [AKK)]
This allows us to sum up all the diagrams easily to obtain

T° AKK)

TIoAKK (5.5.23)

rak) = 3 ro k) -

nwl

To evaluate A(k,k') we define B=k+Kk and rewrite Eq.(5.5.22) in the
form

AKK)=(T 2/1.2)2 G(k1)G(B-ky)*
K

o2 f 1 1 kidkid6
E-e(ki)+in E-g(B-ki)-in 4n*

o f 1 1 mde(k1)d@
e(k))—E —in e(k) — E - (h*kifcos®/m)+ (W2 /2m)+in  4m’h®

The integration over &(k,) is performed readily using the residue theorem
(see G. Arfken (1970), Mathematical Methods for Physicists, Second
Edition, Section 7.2, Academic Press) assuming that the limits extend
from negative infinity to positive infinity. This makes no difference since
most of the contribution comes from around the poles.
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miT? 1
AkK)= e f( [e(kl)—E—(hzklﬁcoselm)+(h2}32/2m)+ in e-E+ir]d0

nel 1 dB
» 1+i(AivBcosd/2m) wm

where E = (mv?/2) and we have made use of Eq.(5.5.17). The importance
of the maximally crossed diagrams arises from the fact that

A(k,k')=%==1 if B=k+K=0

leading to a large contribution to I'(kK) for k' = -k (see Eq.(5.5.23)).
This is a manifestation of the enhanced backscattering that leads to the
phenomenon of weak localization. The conductivity correction due to
weak localization arises primarily from a small angle of wavevectors
around the backscattering direction defined by B =0, so that it is
sufficient to evaluate A(k,k") for small B:

g itvBcos® hH2B%cos?0) do
AGK)~ ”‘f{l— Cem }ﬂ

TIel . h‘zvzﬂz
1 8n’*

Noting that 7 = #/27 and defining D = v>7/2

A(k,k).,,"e' (1-Dtp*) where B=k+K (5.5.24)

Substituting into Eq.(5.5.23) we obtain

Ik k)=T*H)C(B) (B=k+K) (5.5.25)
1/Dt
where C(B)~ W (5.5.26)

noting that 7, << T,, and neglecting the term involving B* in the numera-
tor.

Weak localization correction to the conductivity

Now we can evaluate the correction to the conductivity from Eq.(5.5.21)
by substituting for I'(k, k') from Eq.(5.5.24):
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2 S0 -Rlewfl6@ -wfee)

As we have discussed, the primary contribution comes from small values
of 3, so that we can write approximately

b -hLU (R v2(-R)| G| G~ k)l] PEC)

The term within parentheses can be written as

Y, ) [ 722 cos? 0 ( 1 )2( 1 )2 kdkdé

m? E-¢gk)+in ) \ E-e(k)-in) 4n°
_-U? J (k) 1
© 2n Y [e(k)-E-in] [e(k)- E+in] de(k)

This integral can be performed using contour integration to yield (again
assuming the limits to extend from negative to positive infinity)

2
LA o I S
2w de [g -E+ in] emErin
= -U%E/An® = 2Dt

For the last step we have made use of Eqs.(5.5.16), (5.5.17) and the
relations E = mv?*/2 and D = v*7/2. We thus obtain

a _ 2D1:
2¢* /h

(5.5.27)

Substituting from Eq.(5.5.26) and converting the summation into an

integral
@9

1 _dB)
2e2/h f B*+(/D7,) (5-528)

An upper cutoff on the integral is necessary since the expression derived
above for A(k,k') (see Eq.(5.5.24)) is only valid for small values of 8. A
reasonable cutoff seems to be

B = (D7)

as indicated, since the expression for A(k,k') goes to zero and changes
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sign at this point. The precise value of this cutoff does not lead to any
observable consequences, as long as it is unaffected by temperature and
magnetic field. Performing the integral we obtain
2
Ao=-2nmZe
Th T

in agreement with the result obtained earlier from heuristic arguments
(see Eq.(5.2.4)).

Effect of magnetic field

So far we have neglected the magnetic field and set the vector potential
to zero. A simple heuristic argument can be used to arrive at the correct
results quite simply. As we have discussed earlier the effect of a mag-
netic field can be understood in terms of a quantization of the allowed
wavevectors so that an integer number of wavelengths can fit into the
cyclotron orbit (see Fig. 1.5.2). The allowed wavevectors are obtained by
equating the kinetic energy to the energy of the Landau levels:

2k2 2|le|B
Wk =(n+l)hcoC = k2 =(n+l)—|—e—|—
2m 2 2 h

In a magnetic field the quantized values of B are given by a similar ex-
pression but with the magnetic field B replaced by 2B:

2 1 ) 4le|B
= n+=|—— 5.5.29
pi=(ne )2 (5:5.29)
This can be understood by noting that a vector potential has the effect of
replacing all wavevectors

k with K+ (eA/h)

Consequently we would expect the vector B =(k+K) to be replaced by
B +(2eA/n) as if the vector potential (and hence the magnetic field)
were twice as large.

The conductivity correction is obtained by modifying Eq.(5.5.28) to
take into account this quantization of B:

Ao 1 4e|B ¢ 1

—=— 3 where am
2e‘/h 2t h ~ B: +(1/D1,)

_r
4|e|BDT

Substituting from Eq.(5.5.29) we obtain
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1 h
- N where h=— D"
wh g (n+1)+b where b= 4|e|BDt,

The sum over n can be expressed in terms of the digamma functions W
(see for example Section 10.2 of the book by Arfken cited after
Eq.(5.5.23)) to yield

{5 eere)-o{5+)
=——|¥Y|=+a+b|-¥|-+b
A= 2t 2
2
=_e_ b d _1._+____h_ -¥ l+_h__._._.
mh| |2 4|e|BDt 2 4le|BDt,

This is the expression that was used to fit the experimental data in Fig.
5.3.2 with one adjustable parameter, namely 7, (see Exercise E.5.2 at the
end of this chapter). The excellent quality of the fit suggests that the
essential physics is captured quite well by the theoretical treatment
described above.

(5.5.30)

Real space interpretation

Our entire discussion so far has been based on the momentum representa-
tion. However, it is easy to transform to real space and interpret the
results physically. For example if we Fourier transform Eq.(5.5.26)

[Dﬂ R ]am-— (B =k+K)

we obtain {-sz " Ti] C(p)~ %G(p) (p =r-T1) (5.5.31)

This is basically the diffusion equation for particles (having a lifetime of
Tg), SO that the function C(r,r') represents the probability of finding an
electron at r if it is introduced at r'. Ensemble-averaging makes the
medium appear homogeneous so that C(r,r') depends only on the differ-
ence coordinate r—r'. In the momentum representation this is reflected
in the fact that C(k,k') depends only on (k +K) and not on (k-Kk).

In the presence of a weak magnetic field Eq.(5.5.31) is changed to

[—D(V 2“""(’)) :IC(r r‘)~—8(r r) (5.5.32)
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This can be understood by noting that a vector potential has the effect of
replacing all wavevectors

k with k+(eA/R)

Consequently we would expect the vector f=(k+K) to be replaced by
B+(2eA/n) and hence the gradient operator V by V —(2ieA/h). This
argument is strictly correct only if the vector potential is spatially uniform
(zero magnetic field) but is expected to be reasonably accurate for weak
magnetic fields. The function C(r,r') is often referred to as the
‘Cooperon’ due to its similarity to a quantity appearing in the theory of
Cooper pairs in superconductivity.

We can express the weak localization correction to the conductivity in
terms of C(r,r') by Fourier transforming Eq.(5.5.27)

Ao
2e*/h

~-Dz[C(p)],_, = -D7[C(r,r)] (5.5.33)

Thus the weak localization correction is proportional to the probability of
a particle returning to its point of origin. This is quite reasonable since
paths that return to the point of origin interfere constructively with their
time-reversed counterparts thus slowing down the process of diffusion and
reducing the conductivity. The correction to the conductivity (Eq.(5.5.30))
can be calculated from this real space formulation using Eqs.(5.5.32) and
(5.5.33).

Electron—electron interactions

The diagrammatic theory has also been used to calculate the effect of
electron~electron interactions on the conductivity. It has been shown that
such interactions affect the self-energy in a disordered medium resulting
in a temperature-dependent correction to the conductivity as stated earlier
in Eq.(5.2.5). However, this is beyond the scope of this book and we refer
the reader to the references cited earlier.

Conductance fluctuations

We have seen that the calculation of conductance requires us to evaluate
the ensemble average of the product of two Green’s functions since the
transmission function T is proportional to G® times its complex conjugate.
The theory of conductance fluctuations requires us to compute the
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ensemble average of T° which is proportional to the product of four
Green’s functions. Consequently the details are much more complicated.
We refer the reader to P. A. Lee, A. D. Stone and H. Fukuyama (1987),
Phys. Rev. B, 35, 1039 (see also Ref.[5.5] and references therein).

Summary

According to Ohm’s law, the resistance of an array of scatterers increases
linearly with the length of the array. But if the array is phase-coherent
then its resistance will increase exponentially once the resistance reaches
a value of ~ (h/2¢?), that is, about 12.5 kQ. In this regime of strong local-
ization quantum interference between the scattered waves from different
scatterers plays an important role leading to large fluctuations in the re-
sistance if the scatterers are moved around or if the wavelength of the
electrons is changed by changing the Fermi energy or the magnetic field.
Phase-coherent conductors with conductances much larger than (2¢%/h)
are said to be in the regime of weak localization. In this regime quantum
interference effects make the conductance ~ (2e*/h) less than what we
would expect from a semiclassical theory of particle diffusion; interfer-
ence also leads to fluctuations ~ (2e¢/h) in the conductance. These
fluctuations are averaged out in large samples consisting of many phase-
coherent units and can only be observed in small samples. The decrease
in conductance, however, can be observed even in large samples. This ef-
fect is easily destroyed by a small magnetic field (typically less than
100 G), so that it can be identified experimentally by its characteristic
negative magnetoresistance. This effect is often used to measure the
phase-relaxation length in low-mobility semiconductors.

Exercises

E.5.1 Show that the conductance G of a circular conductor (see Fig.
5.2.5) is related to its conductivity o by the relation

19
G - ln(Lmax/Lmin)

where Ly and Ly, are the outer and inner radii of the circular conductor.

E.5.2 Consider the experimental data shown in Fig. 5.3.2. Use Eq.(5.5.30)
to fit the data at T = 0.3 K, with the phase-relaxation time as an ad-
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justable parameter. Note that the digamma function obeys the recurrence
relation

Y(l+x)=P(x)+ 1
x
and can be approximated quite accurately by W(x) = In(x — 0.5) forx > 4.

E.5.3 (a) Consider the data shown in Fig. 5.4.1 for the (h/e) A-B effect.
Estimate the period of the oscillations and thereby deduce the diameter of
the ring.

(b) Suppose we were to use a thick ring such that the conducting channel
has an inner diameter of ~ 1 um that is only 50% of the outer diameter of
~2 um. Would you expect to see A-B oscillations?

E.5.4 Anisotropic scatterers For our calculations in Section 5.5 we as-
sumed isotropic scatterers. For anisotropic scatterers we can write

IUk-k' |2 = USP(B)
where @ is the angle between k' and k which have the same magnitude
(k' = k). Instead of Eq.(5.5.17) we have for the lifetime

1 U
=== N, fP(e)de

while the momentum relaxation time is given by

1. U—‘%Ns fP(e)[1 - cos6]de
Tm R

If we simply evaluate Eq.(5.5.18) we obtain for the conductivity

n.e’t

g =

m
while the correct Drude conductivity is given by

nse’ T
m

g =

Evaluate the conductivity correction from Eq.(5.5.21) by summing the
ladder diagrams shown in Fig. 5.5.10 to obtain the correct Drude conduc-
tivity for anisotropic scatterers.
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Further reading

[5.1] Beenakker, C. W. J. and van Houten, H. (1991). ‘Quantum transport
in semiconductor nanostructures’, Solid State Physics, vol. 44, eds. H.
Ehrenreich and D. Tumbull (New York, Academic Press) (see part II).
{5.2] Mesoscopic Phenomena in Solids, eds. B. L. Al’tshuler, P. A. Lee and
R. A. Webb, (New York, North-Holland, 1991).

Washburn, S. and Webb, R. A. (1992). ‘Quantum transport in small disor-
dered samples from the diffusive to the ballistic regime.” Rep. Prog. Phys.,
55, 1311.

For a thorough discussion of the scaling theory of localization based on
the Landauer approach we refer the reader to

[5.3] Anderson, P. W., Thouless, D. J., Abrahams, E. and Fisher, D. S.
(1980): ‘New method for a scaling theory of localization’, Phys. Rev. B,
22, 3519; Anderson, P. W. (1981). ‘New method for a scaling theory of
localization. II. Multichannel theory of a wire and possible extension to
higher dimensionality’, Phys. Rev. B, 23, 4828.

An elementary description of weak localization and electron—electron in-
teractions in disordered conductors can be found in

[5.4] Al’tshuler, B. L. and Lee, P. A. (1988). ‘Disordered electronic sys-
tems.” Physics Today, 41, 36—45. See also other articles in this issue.

A physical discussion of the correlations between different transmission
paths that give rise to conductance fluctuations can be found in

[5.5] Feng, S. and Lee, P. A. (1991). ‘Mesoscopic conductors and correla-
tions in laser speckle patterns.” Science, 251, 633. See also Imry, Y.
(1986). ‘Active transmission channels and universal conductance
fluctuations’. Europhys. Lett., 1, 249.

A lucid account of the experiments (on metallic films) as well as the
theory can be found in

[5.6] Bergmann, G. (1984). “Weak localization in thin films.” Phys. Rep.,
107, 1. Section 3 of this article can be used to supplement our discussion
in Section 5.5. Also many citations to the original literature (which we
have not provided) can be found.

The reader can also supplement our discussion in Section 5.5 with other
tutorial discussions such as
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[5.7] Doniach, S. and Sondheimer, E. H. (1974). Green’s functions for
Solid State Physicists, Chapter 5, in Frontiers in Physics. Benjamin/
Cummings.
Bagwell, P. F. (1988). M.S.Thesis, Chapter 7, Massachussetts Institute of
Technology.

Finally we note that there have been many interesting developments in
the field that we have not discussed at all, such as persistent currents in
normal metal rings (see for example, Mailly, D., Chapelier, C. and
Benoit, A. (1993), Phys. Rev. Lett., 70, 2020) or quantum chaos in mi-
crostructures (see for example, the three articles in Chaos (1993), 3, 643,
655 and 664).
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Double-barrier tunneling

6.1 Coherent resonant tunneling
6.2 Effect of scattering
6.3 Single-electron tunneling

Tunneling is perhaps the oldest example of mesoscopic transport. Single-
barrier tunneling has found widespread applications in both basic and
applied research. The latest example is scanning tunneling microscopy
which has made it possible to image on an atomic scale. However, our
purpose in this chapter is not to discuss single-barrier tunneling; the field
is far too large and well-developed. Instead we will focus on what is
called a double-barrier structure, consisting of two tunneling barriers in
series. Since the pioneering work of Chang, Esaki and Tsu (Appl. Phys.
Lett. 24, (1974) 593) much research has been devoted to the study of
such structures. Two important paradigms of mesoscopic transport have
emerged from this study, namely, resonant tunneling and single-electron
tunneling. At the same time, the current—voltage characteristics of these
structures exhibit useful features at room temperature and high bias, un-
like most other mesoscopic phenomena which are limited to the low tem-
perature linear response regime.

We start in Section 6.1 with a discussion of current flow through a
double-barrier structure, assuming that transport is coherent. The current
can then be obtained by calculating the coherent transmission through the
structure from the Schrodinger equation. In Section 6.2 we discuss how
scattering processes inside the well affect the peak current and the valley
current.

Finally in Section 6.3 we briefly introduce the phenomenon of single-
electron tunneling which is one of the most active areas of research at

246



6.1 Coherent resonant tunneling 247

this time. Like resonant tunneling, it is observed in double-barrier struc-
tures. But the physical mechanisms underlying the two phenomena are
fundamentally different. Resonant tunneling arises from the wave nature
of electrons which gives rise to energy quantization in confined struc-
tures, while single-electron tunneling arises from the particle nature of
electrons which gives rise to charge quantization. Resonant tunneling is
not observed if the distance between the barriers is long enough that the
spacing between the allowed energy levels is negligible compared to kgT.
But single-electron tunneling can still be observed, as long as the capaci-
tance is small enough that the electrostatic energy of a single electron
(€%/C, C: capacitance) exceeds kgT. This effect would be absent if charge
were not quantized, that is, if e were equal to zero.

6.1 Coherent resonant tunneling

Mesoscopic conductors are usually fabricated lithographically on a 2-
DEG such that the current flows laterally along the film. By contrast the
device we will now discuss is usually implemented in a ‘vertical’
configuration where the current flows perpendicular to the plane of the
films (Fig. 6.1.1). It consists of two potential barriers in series, the barriers
being formed by thin layers of a wide-gap material like AlGaAs sand-
wiched between layers of a material like GaAs having a smaller gap.
Both barriers are thin enough for electrons to tunnel through. It might
seem that the current—voltage characteristics of two barriers in series

x y
Ec
z

GaAs E—
AlGaAs -
Barriers GaAs quantum well J

GaAs

n-GaAs substrate

|

Fig. 6.1.1. Resonant tunneling device. A GaAs layer a few nanometers thick is
sandwiched between two AlGaAs barrier layers of similar thickness. Adapted with
permission from Fig. 2 of F. Capasso and S. Datta (1990), Physics Today, 43, 74.
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cannot be any more interesting than those of a single barrier. Ohm’s law
would suggest that we would simply need twice the voltage to get the
same current. That is exactly what would happen if the region between
the two barriers were microns in length. But if this region is only a few
nanometers long (which is a fraction of the de Broglie wavelength), the
current-voltage characteristics are qualitatively different from those of a
single barrier, underlining once more the failure of Ohm’s law on a meso-
scopic scale.

Principle of operation

The current-voltage (/-V) characteristics of a double-barrier structure are
easily understood if we note that the region between the barriers acts like
a ‘quantum box’ that traps electrons. It is known from elementary quan-
tum mechanics that a particle in a box has discrete energy levels whose
spacing increases as the box gets smaller. We assume that the box is
small enough that there is only one allowed energy E. in the energy range
of interest (see Fig. 6.1.2). The structure then acts as a filter that only lets
electrons with energy E. transmit. An applied bias lowers the resonant
energy relative to the energy of the incident electrons from the emitter.
When the bias exceeds the threshold voltage Vr, the resonant energy falls
below the conduction band edge in the emitter and there is a sharp drop
in the current. The current—voltage characteristics thus exhibit a negative
differential resistance. This was first demonstrated in 1974 by Chang,
Esaki and Tsu, but it was a small effect limited to low temperatures.
Since then there has been significant improvement in the material quality
and fabrication techniques and large effects at room temperature are quite
common today (see Fig. 6.1.3). The negative differential resistance forms
the basis for practical applications as a switching device and in high fre-
quency oscillators (see Refs.[6.1] and [6.2]).

One small point. The band diagrams drawn in Fig. 6.1.2 are greatly
simplified versions where we have assumed that the applied voltage drops
linearly across the device. This would be true if there were no space
charge inside the device and the surrounding regions were very highly
conducting. For quantitative calculations (like the theoretical curve
shown in Fig. 6.1.3) it is necessary to compute the charge density every-
where and use it in the Poisson equation to obtain the actual band dia-
gram (see for example, M. Cahay et al. (1987), Appl. Phys. Lett. 50, 612).
We will generally ignore these important ‘details’, in order to emphasize
the basic conceptual issues.
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@ v=0o E

4]
|4 z

Fig. 6.1.2. Conduction band diagram for a resonant tunneling diode with (a) V=0,
B)V=Vrand(c) V> V1.

Quantitative calculations of the I-V characteristics are usually per-
formed using the expression for the current derived in Chapter 2 (see
Eq.(2.5.1)):

2e o~
1= fT(E)[ A(E)- f(E)|dE 6.1.1)
where fi(E) and f(E) are the Fermi functions in the two contacts and

T(E) is the transmission function obtained by summing the transmission
probability T,..(E) over all input and output modes:
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Fig. 6.1.3. I-V characteristics of a resonant tunneling diode 8 pm in
diameter. Reprinted with permission of MIT Lincoln Laboratory, Lexington,
Massachussetts, from E. R. Brown, C. D. Parker, T. C. L. G. Sollner, C. I, Huang and
C. E. Stutz (1989), Proceedings of the OSA Topical Meeting on Picosecond
Electronics and Optoelectronics, March 1989, Salt Lake City, Utah.

T(E)= 2 2 Tyem(E) 6.1.2)

The transmission function is usually calculated from the Schrédinger
equation, neglecting all scattering processes. The first part of the current—
voltage curve is described fairly well by this approach. But once the bias
exceeds the threshold voltage, the theory predicts a much smaller ‘valley
current’ than what is observed experimentally. The reason is that the val-
ley current is determined largely by inelastic scattering processes which
are completely ignored in the theoretical treatment. We will discuss the
effect of scattering in Section 6.2,

In this section we will neglect all scattering processes. For simplicity
we will also assume the temperature to be low enough that the Fermi
functions can be approximated by step functions: fi(E)~%u - E) and
J2(E) ~ O u2 - E) (see Eq.(1.2.9)). Eq.(6.1.1) then simplifies to

2e =
I= - !;T(E)dE (6.1.3)
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Next, we need the transmission function T(E).

Transmission function T(E)

To evaluate the transmission function we start from the effective mass
equation

. 2
E.+ -(-m;viz‘:ni‘l— +U(r)|¥(r)=E¥(r) (same as Eq.(1.2.1))
We will assume that there are no magnetic fields so that the vector
potential A can be set to zero. Also we will set the band-edge energy E.
at the left equal to zero as shown in Fig. 6.1.2.

If we assume that the potential U can be written as the sum of a trans-
verse (cross-sectional) confining potential Ur(x,y) and a longitudinal
potential UL(z) then we can separate the problem into two parts. The
transverse potential determines the transverse mode energies

[‘ f,;(;% + 'a_z) +Ur (x,y)]% (%,Y) = Enpm(x,y)  (6.1.4)

while the longitudinal potential defines the scattering problem:

[EL LA UL(z)]w,,(z) -0 where EL=E—¢n (6.15)
2m &

Knowing the potential UL(z) we can solve Eq.(6.1.5) to obtain the trans-
mission probability Ty (EL) for an electron incident (in any mode m) with
a longitudinal energy Er. = E - &,. Since we have assumed that the trans-
verse confining potential Ur(x,y) does not change along the z-direction,
there is no scattering from one transverse mode to another. The transmis-
sion probability can thus be written as

I;w-m(E) - TL(E - em)sm

The total transmission function T(E) is obtained by summing the trans-
mission probabilities over all initial and final modes as indicated in

Eq.(6.1.2):
T(E) = 2 2 Tyem(E) = 2 TL(E - &n) (6.1.6)

Thus the transmission function at a particular energy E is obtained by
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summing the longitudinal transmission probability Ti(EL) for each inci-
dent mode m having a longitudinal energy EL = E - &,. Next we need
TL(EL).

We can write down the longitudinal transmission probability Ti(EL) for
a double barrier structure by noting that it consists of two barriers (or scat-
terers) in series. From our discussion on the quantum addition of series
resistors we know that the transmission probability through two scatterers
is given by (see Eq.(3.2.4))

In
1- 2*\/R1R2 CcOos O(EL) + R1R2

TL(EL) = (6.1.7)

where Ty, T, are the transmission probabilities through barriers 1 and 2 in-
dividually and Ry, R, are the corresponding reflection probabilities. 8 is
the phase shift acquired in one round-trip between the scatterers.

Lorentzian approximation

The longitudinal transmission probability T (EL) given by Eq.(6.1.7) usu-
ally has sharp peaks at specific values of EL. To see this we rewrite
Eq.(6.1.7), assuming that R;, R; ~ 1 (as is normally the case):

IT;
T(EL) = 12

[1_¢R—1k:]2 +24/RiR; (1 - cos O(EL))

L

2
[Tl ;Tz] +2(1 - cosO(EL))
The sharpness of the resonance arises from the fact that since Ry, R2 ~ 1,

T and T, are very small, so that the denominator is very small every time
the round-trip phase shift 6(EL) is close to a multiple of 2s:

[cosO(EL)]g, .5, =1 — [6(EL)]s,. g, =207

Close to this resonance value we can expand the cosine function in a
Taylor series

(6(EL) -2nm)* = %[ai'?—) (EL -E.)

L

1—cosB(EL)=-;—

and write the transmission Tp(EL) as
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ILI;
2
(Ev _Er)2 + (——————Fl -;Fz )

TL(EL) =

where I‘lng—E—'lTl and I‘Z-E-E-I-“-Tz
deo do

This approximate result is often used (neglecting any energy dependence
of I'; and I'z) in place of the exact result (Eq.(6.1.7)) for analytical calcu-
lations. We can write it in the form

NI
TL(EL)~ A(EL - E, 6.1.8
L(Br) = o AEL - E) (6.18)
where A(¢) is a Lorentzian function:
r
A()e ——— (['=I+L 6.1.9
() £2+(r/2)2 ( =11 2) ( )

Substituting Eq.(6.1.8) into Eq.(6.1.6) we obtain the total transmission
function:

nr;
I‘1 + rz

T(E) = 2 TL(E - €n) = EA(E -En) (6.1.10)

where E.=E +¢n (6.1.11)

The final result for the transmission function is intuitively quite clear.
Every transverse mode m gives rise to a peak in the transmission if the to-
tal energy equals the longitudinal resonance energy plus the transverse
mode energy: E, + &,. The magnitude of the transmission is determined by
the parallel combination of I'; and I'; while the width of the peak depends
on the sum of I'; and I'.

Significance of I' and I';
The Lorentzian approximation for the transmission function (see
Eq.(6.1.10)) is often used for analytical calculations. It is reasonably ac-
curate close to the resonance, but should not be used far from resonance.
One advantage of this approximation is that the entire physics is now
characterized by just two parameters, I'; and I';, which are defined by

dE
rl-iifb&n wd Lt 6.1.12)
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Physically I'; and I'; (divided by %) represent the rate at which an elec-
tron placed between the barriers would leak out through the barriers into
lead 1 and lead 2 respectively.
To see this, we first note that if we write the round-trip phase shift as
6 ~ 2kw where w is the effective width of the well (any phase shifts as-
sociated with the reflections at the barriers are included in w), then,
4B = —l—(g) =hv where v=— (6.1.13)
de 2w\ dk 2w
where v = dE/hdk is the velocity with which an electron bounces back
and forth between the barriers. The quantity v is called the attempt fre-
quency which tells us the number of times per second that the electron
impinges on one of the barriers (that is, attempts to escape). It is equal to
the inverse of the time that the electron takes to travel from one barrier to
another and back.
The physical significance of I'; and I'; is now easy to see. From
Eqs.(6.1.12) and (6.1.13) we can write

fhi =T and % =vE (6.1.14)

The attempt frequency tells us the number of times per second that an
electron attempts to escape. A fraction T; of the attempts on barrier 1 are
successful while a fraction T, of the attempts on barrier 2 are successful.
Hence I'i/h and I3/h tell us the number of times per second that an elec-
tron succeeds in escaping through barriers 1 and 2 respectively.

Current

The current is obtained by integrating the transmission function from y, to
w1 as indicated in Eq.(6.1.3). Since there is no transmission unless the
longitudinal energy E. is greater than zero (that is, the total energy is
greater than &,),we can integrate from & to yi:

I=ZI,,.

2e " 2e T
I, =— (T(E)E ==
h_!'T()

“
——— [A(E - En)dE 6.1.15
5Tt AC 5 (6.1.15)

Thus the current carried by a mode depends on the area under its spectral
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Fig. 6.1.4. The current carried by a mode m is obtained by integrating the
corresponding spectral function A (E-E ,,,) over the energy range &, < E < .

function A(E - E,») inside the energy window from &, to u; (Fig. 6.1.4). If
the lineshape function for a mode is completely inside the window, then
the integral is equal to 2. It then carries the maximum current, Ip that
can be carried by a single mode:

;.2 LD

6.1.16
T AL+ ( )

The current carried by a mode m is approximately equal to Ip if it is
‘resonant’, and approximately zero if it is non-resonant (see Fig. 6.1.4).
The total current can be obtained approximately by adding up the currents
carried by all the resonant modes.

Peak current

In any given bias condition, the resonant modes are characterized by

1 >E,>€En thatis py—€n>E >0 (6.1.17)

As the bias is increased E, decreases. Different modes start conducting at
different values of E, (when u; — E; exceeds &), so that the current in-
creases gradually at first. But they all stop conducting simultaneously
when E, becomes less than zero, making the current drop sharply at a cer-
tain value of bias (see Fig. 6.1.3).

For a large cross-section device we can convert the the summation
over modes in Eq.(6.1.15) into an integral (using the two-dimensional
density of states mS/mh?) to obtain
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w~-E,

mS mS
I= pres JO'I,,.de,,. =Ip ;{;,?[“1 -E ] (6.1.18)

From Eq.(6.1.18) we can see that the current increases linearly as the bias
is increased. The current, Ip, carried per resonant mode remains the same,
but the number of resonant modes increases linearly with bias. The peak
current is reached when E; =0 at V= Vi

mSul
ah?

(6.1.19)

Ipeak = IP

Note that for simplicity we assumed ‘zero’ temperature throughout this
discussion. The peak current is modified at non-zero temperatures due to
the spread in the energy of the incident electrons.

6.2 Effect of scattering

We have so far assumed that transport is fully coherent; that is, the elec-
tron transmits from the left to the right in a single quantum mechanical
process whose probability can be calculated from the Schrédinger equa-
tion. This is a reasonably accurate picture if the average time an electron
spends in the resonant state (called the eigenstate lifetime) is much less
than the scattering time 7,. Otherwise, a significant fraction of the current
is due to ‘sequential tunneling’ where an electron first tunnels into the
well and then, after losing memory of its phase, tunnels out of the well.
The difference between coherent resonant tunneling and sequential reso-
nant tunneling is somewhat like the difference between a two-photon pro-
cess and two one-photon processes in optics. Coherent resonant tunneling
is like a two-photon process (with a photon energy of zero) where the res-
onant level E; in the device acts as a virtual state while sequential reso-
nant tunneling is like two one-photon processes where an electron makes
a real transition into the resonant level and another real transition out of
it.

In Section 6.1 we showed that the current carried by a resonant mode is
given by

Ip = 2 Lz (same as Eq.(6.1.16))
AL+I;

How is this result modified by scattering processes? This is the question
we will first address in this section. We will then discuss the effect of
scattering on the off-resonant current.
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The two parameters I'; and I'; represent the rate (times #) at which an
electron placed between the barriers would leak out through the barriers
into lead 1 and lead 2 respectively (see Eq.(6.1.14)). Scattering intro-
duces a new parameter into the picture, namely the scattering rate, which
is related to the inverse of the scattering time:

T, = h/z,

The coherent tunneling picture is appropriate for devices with thin barriers
having

I+ >>T, thatis (T1+T2)>>—1—
Ty

while for devices having

I+ s, thatis (T1+T2)s—1—
VTo

a significant fraction of the current is due to sequential tunneling.

Sequential model for the resonant current

Consider a device biased such that the resonant energy lies within the
energy range of the incident electrons (see Fig. 6.2.1). In Section 6.1 we
assumed a coherent model with no scattering processes inside the well.
At the other extreme, with lots of scattering inside the well, we could ig-
nore coherent transmission altogether and calculate the current by writing
a simple rate equation for the rate at which electrons enter and leave the

Fig. 6.2.1. A double-barrier diode biased such that the resonant level E; lies within the
energy range of the incident electrons. We consider a single transverse mode with its
transverse energy &, set equal to zero.
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resonant level through the two leads. Noting that the rate constants for the
two barriers are given by I'/i and I:/h, we can write

k=2 2[ 0~ ) i1 5]
(6.2.1)

L
L=2e—[£(- f)- - £)]
where f; is the probability that the resonant level is occupied and the fac-
tor of two accounts for the two spins. Assuming low temperature and high

bias, we can set the Fermi factor in lead 1 equal to one and that in lead 2
equal to zero in the energy range of interest (f; = 1, f, = 0) to obtain

L~ 2e—rhi(1- £) and I~ —Ze% f (622)

For current conservation we must have I; + I, = 0. Hence

I
- )= I’ r = =
1(1- fo) =T2f; [ +m,
so that L=-p=2_ T (6.2.3)
h I‘1 + rz

This is the same answer that we obtained for the resonant current per
mode assuming coherent transmission (see Eq.(6.1.16))! It is surprising
that the current calculated from a fully sequential model agrees precisely
with that obtained from a fully coherent model. This suggests that phase-
breaking processes should have little effect on the resonant current (T.
Weil and B. Vinter (1987), Appl. Phys. Lett. 50, 1281). This conclusion is
approximately true though detailed calculations show small effects (see
S. M. Booker et al. (1992), Semicond. Sci. Technol., 7, B439).

We will now justify this conclusion using a general model that includes
both coherent and sequential tunneling. This problem has been addressed
by many authors (see, for example, A. D. Stone and P. A. Lee (1985),
Phys. Rev. Lett. 54, 1196 and M. Jonson and A. Grincwajg (1987), Appl.
Phys. Lett. 51, 1729).

Resonant current with both coherent and sequential components

In Section 6.1 we assumed that all the electrons could transmit coherently
through the structure without scattering. In the presence of scattering
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Fig. 6.2.2. A resonant tunneling diode consists of two barriers with scattering matrices

as shown in series. (a) Scattering processes cause electrons to leak out of the coherent

stream as shown. (b) The scattered electrons are returned partially to terminal 1 and
partially to terminal 2.

processes, we have the situation shown in Fig. 6.2.2a where only a frac-
tion of the electrons transmit coherently while the remainder get scattered
inside the well and effectively leak out of the coherent stream. We will
assume that the scattering rate is small compared to the attempt

frequency

I, <<hv thatis vry>>1

This ensures that an electron can bounce back and forth several times in-
side the well before it is scattered, so that it still makes sense to talk

about a resonant level.
We will show that in the presence of scattering processes, the peak co-

herent current per mode (Zcn) is given by (cf. Eq.(6.1.16))

=26 DIz (6.2.4)
AL+ + I],,
while the scattered current per mode is given by

r=2_Tle (62.5)
h I‘1 + rz + I},,

Since the scattered current has no place to go it must be reinjected back
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into the structure (see Fig. 6.2.2b). When this current is reinjected it
comes partially out of terminal ‘1’ and partially out of ‘2’ in the ratio
I'1:T,. The part coming out of 2’ comprises the sequential current (Iiy), S0
that

I; I,

I = I =x
< I‘l + ITz s I-i + I‘z

Lot (6.2.6)

The total current is obtained by adding Eqs.(6.2.4) and (6.2.6):

2e Il
Io=Ioh + Joqg = ———— 6.2.7
R VP ot 62.7)
This result is independent of T, showing that scattering processes have
no significant effect on the total resonant current through a level.

Derivation of Equations (6.2.4) and (6.2.5)

Equations (6.2.4) and (6.2.5) are the key results that we used in the above
argument. These are very similar to the Breit—-Wigner formulae for
nuclear scattering (see for example, Section 145 of L. D. Landau and E.
M. Lifshitz (1977), Quantum Mechanics, Third Edition (Oxford, Pergamon
Press)). We will briefly outline the derivation here; the details are spelt
out in Exercise E.6.3 at the end of this chapter. We model the ‘leaking
out’ of electrons due to scattering by introducing an attenuation constant
per unit length a. The amplitude for coherent transmission can be calcu-
lated by summing the different paths shown in Fig. 3.2.2, taking care to
insert a factor of exp[-2aW] every time we traverse the well. We then
obtain

517

15153 .
instead of
1-n rexp[-2aW] 1-Airn

W being the width of the well. The transmission probability (obtained by
squaring the amplitude) is modified from the earlier expression

(Eq.(6.1.7)):

TT;
TL(EL) = 12

1-2yRiR; exp[-20W]cosO(EL) + RiR; exp[-4aW]

If we approximate the cosine function by a quadratic function as we did
before and assume that oW <<1 (this is equivalent to the condition stated
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earlier, namely, I, << iiv, as evident from Eq.(6.2.9) below), then we can
reduce this expression to a Lorentzian but with an increased linewidth:

I
T.(EL) = 1r2+r TV (6.2.8)
(B _Er)2 +(_l_2_£)
2
where I'; and I'; are defined as before (see Eq.(6.1.12)) and
Iy = hv(4aW) 6.2.9)

We can write the transmission probability in the form (cf. Eq.(6.1.8))

II;

T (EL)m —2—
t(Ev) L+ +T,

Ay(EL - Ey) (6.2.10)

where Ag(¢) is a Lorentzian function but with a larger linewidth (cf.
Eq.(6.1.9)):

L Cam+D+T) (6.2.11)

406~ T

Hence the coherent transmission function is given by (cf. Eq.(6.1.10))

InI;

F®la-mirer,

EA,,,(E -E.) 6.2.12)
The coherent current is obtained by integrating the coherent transmission
function as before. Instead of Eq.(6.1.15) we now obtain

2e I‘J‘z

[2n] s = TmfA"’(E ~ En)dE

Em

It is easy to see that the peak current per mode is given by Eq.(6.2.4).

The derivation of Eq.(6.2.5) for the scattered current I's follows along the
same lines. We first show that the transmission probability Ts correspond-
ing to the scattered current is given by (see Exercise E.6.3 at the end of
this chapter)

Ty(EL) ~ E-F‘FLE;A,,,(EL _E) (6.2.13)

+I +

This is basically the same as the result for the coherent current
(Eq.(6.2.4)), but with I'; replaced by I',. This replacement seems reason-
able if we think of the scattered current as transmitting into a third
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terminal with coupling I',, just as the coherent current transmits into a
terminal with coupling I',. Using the same replacement we obtain the
scattered current (Eq.(6.2.5)) from the coherent current (Eq.(6.2.4)).

Linear response

It will be noted that the spectral function A, does get broader due to the
scattering processes. But because the energy range of the incident elec-
trons is typically much larger than I;, the measured current reflects the
area under the spectral function and remains unchanged. Instead, if we
were to measure the linear response conductance, the result may not be
independent of I',. Using the Landauer formula (see Eq.(2.5.3)), we can
write the linear response conductance corresponding to the coherent
current as

[GEN)] .= 2;—[7(& )R

282 l"d"z
— A (Es —En
h I+ + F¢A¢( f )

Making use of Eq.(6.2.6) we obtain the total (coherent + sequential) con-
ductance:

G(E;) =[G(ED)]., [1+ e ]

-3 Iy 6 E)
m 1+ 13
By measuring the linear response conductance as a function of the Fermi
energy we could measure the spectral function A,, and not just the inte-
grated area. Since the spectral function is significantly broadened by the
scattering if I', > I'y + I'; (see Eq.(6.2.11)), we would expect the mea-
surement to be sensitive to scattering processes.

However, it is also essential that the temperature be sufficiently low
(ksT < T',). Otherwise the spread in the energy of the incident electrons
wipes out any effect due to the broadening of the spectral function. To see
this, we note that at non-zero temperatures, neglecting inelastic pro-
cesses, the conductance can be written as (see Egs.(2.5.4)2.5.6))

I,
-E. 2.14
G(Er)= 2 T, LE - En) (6.2.14)
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where L(¢) is the composite lineshape function obtained by convolving
the spectral function with the thermal broadening function Fr(¢):

L(e) = [Ao()Er(c - £)de

At high temperatures the lineshape is dominated by Fr and becomes in-
sensitive to any broadening of the spectral function A, due to scattering
processes.

Off-resonant current

So far we have considered only the resonant current that flows when the
resonant energy lies within the energy range of the incident electrons.
Consider next the off-resonant current (see Fig. 6.2.3). The off-resonant

Fig. 6.2.3. A double-barrier diode biased such that the resonant level E; lies outside
the energy range of the incident electrons.

current is very small if we neglect scattering processes, as in the theo-
retical I-V characteristics shown in Fig. 6.1.3. Evidently there is a
large discrepancy between theory (which neglects scattering) and
experiment for the valley current, showing the importance of including
scattering processes in this regime (see for example, F. Chevoir and B.
Vinter (1993). Phys. Rev. B, 47, 7260 and references therein). It might
seem that we could include such processes using the same procedure as
described above for the resonant current. However, there are a few
difficulties which we will now describe.

The basic difference between the resonant (Fig. 6.2.1) and the off-
resonant (Fig. 6.2.3) situation is that in one case the linewidth of the reso-
nance lies within the energy range of the incident electrons, while in the
latter case it lies largely outside the resonance. Thus if we follow the
same analysis as before we find instead of Eq.(6.2.4)
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ot

1v,w.,=—2hfxn where K ~ f TodE (6.2.15)
0

(E-E)
assuming that the linewidth is much smaller than the energy difference,

E - E,, between the incident electrons and the resonant energy. The scat-

tered current is obtained by replacing I'; with Ty, just as we did before:
#

I - zhf gT, where g-[&%; (6.2.16)
Actually we should not be using the Lorentzian approximation far from
resonance, but that only changes the precise values of K and g and does
not affect the following argument.

Earlier we obtained the sequential current by arguing that the scattered
current, when reinjected, comes out of terminals 1 and 2 in the ratio I';:I";
(see Eq.(6.2.6)). However, in the present case the scattered current is
reinjected at the resonance energy E, where it must come entirely out of

terminal 2, since there are no states in terminal 1 corresponding to this
energy. Hence the sequential current should simply be equal to the scat-

tered current:

IV,seq == zhggrl (6217)

We are assuming the temperature to be low enough that once the electron
has emitted a phonon and reached E,, it cannot absorb a phonon and re-
turn to the upper energy. Adding Eqs.(6.2.15) and (6.2.17) we obtain the
total valley current (per mode)

Iv = Ivgon + Ivgeq = zhf[K T+ gl ] (6.2.18)

A little thinking shows, however, that there is something wrong with
Eq.(6.2.18). Suppose we make barrier 2 so thick that I'; (and hence KX) is
essentially zero. Eq.(6.2.18) still predicts a non-zero valley current equal
to (2e/h)gl! But how can any current flow if electrons cannot transmit
across barrier 27 What happens for very thick barriers is that the resonant
level fills up, since it cannot empty anywhere. Once the level is full,
electrons can no longer scatter down into it so that the scattering rate
Ip/h becomes zero and the valley current goes to zero as expected. To
include this effect we should modify Eq.(6.2.17) to write the sequential
current as

Ivseq = —ilfgn(l- ) (6.2.19)
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To complete the story we need to calculate the occupation factor f; for
the resonant level, which requires us to go beyond the scattering theory
we have been using in most of this book. This is the basic difficulty with
transport involving vertical flow that we discussed in Section 2.7.

It has been shown (see R. Lake et al. (1993), Phys. Rev. B, 48, 15132)
that the correct occupation factor f; for the resonant level can be obtained
quite simply from the sequential model by modifying the rate equation as
follows (cf. Eq.(6.2.2)):

L= 2e5;—‘(1- ) and L~ —Ze% £ (6.2.20)

All that we have done is to reduce the rate constant for barrier 1 from I'y
to gI';. This seems reasonable since an electron in order to get into the
resonant level from terminal 1 must tunnel through barrier 1 and emit a
phonon. Setting I, + I; = 0 as before we obtain

L
fi= Eff’:—rz (6.2.21)

As long as I'; >> gI'y, the resonant level is essentially empty (f; ~ 0) and
the valley current is independent of I'; as we had argued earlier. But once
I'; becomes comparable to gI'; the level starts to fill up and the current
decreases. Since the factor g is usually quite small, this requires very
thick barriers.

Substituting from Eq.(6.2.21) into Eq.(6.2.19) we obtain a simple ex-
pression for the sequential component of the valley current (per mode):

Ivoeq = Ehf ghle (6.2.22)
gI‘1 + rz

Generally we assume that the valley current will be a small fraction of
the peak current, independent of I'; and I';. But it is easy to see from
Eqgs.(6.2.7) and (6.2.22) that this is not true in general:

1 11

For very asymmetric devices having I'; << gI';, the peak and valley cur-
rents can even become equal! There is some experimental evidence for
this (see P. J. Turley et al. (1993), Phys. Rev. B, 47, 12 640).

Note that the simple result given in Eq.(6.2.22) could be derived only in
the low temperature regime assuming that f; =1 and f, = 0 in the energy
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range of interest. In general the sequential current depends on f; and f; in
a complicated manner, as we had argued in Section 2.6, following

Eq.(2.6.12).

6.3 Single-electron tunneling

Double-barrier devices are normally fabricated in a vertical configuration
as shown in Fig. 6.1.1. However, similar devices can also be fabricated in
a lateral configuration using metallic electrodes on a 2-DEG to imple-
ment potential barriers (Fig. 6.3.1). One advantage of these lateral
structures is that a back-gate voltage can be used to change the electron
density in the leads, so that we can study the change in the current flow
through the structure as a function of the equilibrium Fermi energy.

Figure 6.3.2 shows the experimentally measured conductance as a func-
tion of the back-gate voltage. The conductance shows a series of evenly
spaced sharp spikes. The question is whether we can understand this
observation in terms of the resonant tunneling model that we have been

GaAs

Metal Gate (140 nm)
AlGaAs
(100 nm)
1DES —
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\
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Fig. 6.3.1. Lateral double-barrier structure fabricated lithographically on a 2-DEG in
a GaAs-AlGaAs heterostructure. Reproduced with permission from Fig. 7 of
M. A. Kastner (1992), Rev. Mod. Phys. 64, 849.
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Fig. 6.3.2. Measured conductance vs. back gate voltage at T ~ 100 mK for two

structures of the type shown in Fig. 6.3.1. Although the amplitudes of the peaks are

-different, the period of the oscillations is the same for both. Reproduced with
permission from Fig. 8 of M. A. Kastner (1992), Rev. Mod. Phys. 64, 849.

discussing. From this model we can write the linear response conductance
as
o'y

2
e
G(Er) = Z —h_WL(Ef -En) (6.3.1)

This is basically the same as the result we obtained for the vertical struc-
tures (see Eq.(6.2.14)). There are a few differences. Firstly we have left
out the factor of two arising from the degeneracy of the spin levels; in-
stead we let the index m denote a summation over spins as well.
Secondly, the resonant energies for the vertical structures are given by
E. =E. + ¢, where E, is the longitudinal (z-directed) resonance energy
and &, is the subband energy arising from the x—y confinement. Usually
the well width is small enough (a few nanometers) that the longitudinal
resonances are hundreds of meV apart and we only need to consider the
lowest of these (E;). The lateral structures, on the other hand, are quite
long (hundreds of nanometers) so that the longitudinal energies are quite
close together. Thus in calculating the resonant energies E,, we have to
consider both the longitudinal (x-directed) and the transverse (y-directed)
confining potentials.

The third difference arises from the fact that since different longitudinal
energies are involved there can be significant differences in the I'; and I,
for the different resonances m. This is because energy levels with higher
longitudinal energies can penetrate the barriers much better. For this rea-
son we have added a superscript m to the I'; and I'.

At first sight it might seem that we can understand the experimental
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data in Fig. 6.3.2 in terms of Eq.(6.3.1). As the Fermi energy is changed
we expect a series of spikes corresponding to the resonance energies E,,.
The difficulty with this interpretation is that for a 1 um long well, the
spacing AE between one-particle levels is about 20 ueV = kg(0.3 K).
Since this is comparable to the temperature k5T, we do not expect to
see such clear, well separated peaks. Moreover, we do not expect the
peaks to be evenly spaced, since the spacing between one-particle energy
levels is usually non-uniform. It is now believed that the experimental
observations cannot be explained satisfactorily within the non-interacting
resonant tunneling model described above. We need to include electron—
electron interactions.

Electron—electron interactions

The usual procedure for including electron—electron interactions is to cal-
culate the electron density in the structure and insert it into the Poisson
equation to obtain the potential energy Uw in the quantum well. The
conductance can then be written as

62 I‘{"I‘z'"
G(Es)=— Yy ——L(E; -E, -Uw(E
(E) AT (E¢ w(Er))

assuming that the resonance energy E, simply floats up by an amount
equal to the potential energy, Uw, in the well. As the Fermi energy is
raised, the number of electrons, N, in the well increases, thus increasing
the well potential Uw.

We can use a simple model (see Fig. 6.3.3) to write down the potential
in the well in terms of the number of electrons in the well

Uw(Ef)=UON—(Ef) where C=C1+C2 and U0==e2/C

2 mym
e I‘l rz —

so that GEi)=— ———L|E;-E.-UN(E 6.3.2

(‘)hmrmr;[f oN(Er)] (632)
However, this will not help us explain the experimental results any better
than the non-interacting model. To see this let us assume that the number
of electrons in the well increases linearly with the Fermi energy:
N(E;) = aE;. The conductance in Eq.(6.3.2) can then be written as

e’ rry

G(E;) = 172
(Eo) =7 LT +TF

L[E«(1-aUs) - En]
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Fig. 6.3.3. Simple model for a double-barrier device at zero bias. Under bias a charge
Q appears inside the well and the corresponding image charges appear in contacts 1
and 2 in the ratio C:C3.

All that the interaction does is to stretch out the horizontal axis by the
factor (1 ~ aUg)™! in a plot of the conductance vs. Fermi energy. This
cannot lead to peaks in the conductance that were not there in the ab-
sence of interactions.

Charge quantization
The experimental results can be explained if we recognize that the num-
ber of electrons, N, in the well is not a continuous variable as assumed
above. It can only take on discrete values N =0, 1, 2 etc. with different
probabilities Py, such that the average number N is given by

N(E)= 2 NPy (Ex)

From this point of view it seems that we should modify Eq.(6.3.2) for the
conductance as follows:

e Iy
GE)=— > —— Py(E¢)L|E; - E, - NU, 6.3.3
(Ex) 72 I‘{"+I‘z”'; v (Eo L[ Ex o] (6.3.3)
Suppose the dimension of the well is very large compared to a wave-
length so that size quantization effects are negligible and the single par-
ticle levels E,, are very close together. Setting E,, = 0, we obtain

2 mym
G(E) =<3 L

222N PL(E; - NU
hmr;"+r;";"(‘ °)
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so that there are peaks in the conductance every time the Fermi energy is
an integer multiple of the single-electron charging energy Uy = €*/C. Thus
we get peaks in a plot of the conductance versus Fermi energy which are
uniformly separated by U,, even though the energy levels E, obtained
from the Schrodinger equation are very close together. This single-
electron tunneling effect arises from charge quantization, while the
resonant tunneling phenomenon we discussed earlier arises from size
quantization. It is believed that the experimental results shown in Fig.
6.3.2 are largely due to single-electron tunneling rather than resonant
tunneling. These small-area (and hence low capacitance) double-barrier
structures are often referred to as quantum dots.

It is important to recognize the profound conceptual step involved in
going from Eq.(6.3.2) to Eq.(6.3.3).

L{E;-En-NUs] = Y PyL[E;-En-NU]
N

We usually associate the Hartree potential with the average number of
electrons N. But when the electron—electron interactions are strong
(large Uo) we need to think of the Hartree potential as a statistical vari-
able that can have different values NU, with different probabilities Py.
This is a major departure from the usual one-particle picture where it is
assumed that individual particles feel some average potential due to their
interaction with the surroundings.

The conductance expression given above (see Eq.(6.3.3)) is actually
not quite right. The correct expression is (see Y. Meir, N. S. Wingreen
and P. A. Lee (1991), Phys. Rev. Lett. 66, 3048 and C. W. J. Beenakker
(1991), Phys. Rev. B, 44, 1646)

2 mym
G(E;) = fh— > FI,:‘:—;Z;;PN,, (E)L[E; - En— (N +0.5)U0] (6.3.4)
where Py,w(E5) is the probability that there are N electrons in the well, not
counting any electron that may be occupying the one-particle level E.,.
Comparing Eqs.(6.3.3) and (6.3.4) we notice two differences. The argu-
ment of the lineshape function L is a little different and the prefactor is a
little different:

En+NUy—>E,+(N+05U; and Py— Pynm

To understand Eq.(6.3.4) we note that in an interacting system, peaks
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appear in the conductance whenever the Fermi energy coincides with a
one-particle excitation energy, that is, whenever,

E;=EN+1a)-E(N,B)

where E(N + 1,a) represents the energy of a particular (N + 1)-particle
state while E(N,B) represents the energy of an N-particle state. Consider
the states (N + 1,1,) having the one-particle state E», occupied and the
state (N,0.) having the one-particle state E,, unoccupied:

=E. +(N +0.5)U,

E(N +1,1,)- E(N,0,) = [Em . (N+1)zez]_ N2

2C 2C

Consequently peaks appear in the conductance whenever the Fermi
energy coincides with En + (N + 0.5)Uy so that the argument of the line-
shape function is given by

E;-E, —(N+ O.S)Uo

as stated in Eq.(6.3.4).

The strength of the peak is proportional to the sum of the probabilities
of the two many-particle states contributing to this peak: P(N + 1,1,) is
the probability that there are (N + 1) electrons in the well with the level
E,, occupied, and P(N,0n) is the probability that there are N electrons in
the well with the level E,, empty. The reason we sum the two probabilities
is that the device can conduct if it is in either of these states. If the de-
vice is in the state (N,0,) it conducts by having an electron hop into the
level E,, and then hop out again:

(N,0n) — (N+1l,) — (N,0.)
If the device is in the state (¥ + 1,1,) then it can conduct by having an
electron hop out first and then hop in:
(N+11,) — M,0,) — (N+11,)
Both states thus contribute identically to the conductance which con-
sequently is proportional to the sum of the probabilities of the two states:
P(N +1,1,)+ P(N,0p) = Pyn

This is slightly different from the factor, Py, appearing in Eq.(6.3.3) which
is given by

Py = P(N,1,)+ P(N,0,,)
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To apply Eq.(6.3.4) we need Pw,m, which are equilibrium probabilities,
and can be evaluated by applying the standard methods of equilibrium
statistical mechanics to the many-particle states of the quantum dot (see
Exercise E.6.4 at the end of this chapter). This approach has been widely
used to describe the experiments on semiconductor quantum dots. Note
that we have only discussed the linear response of the system which is an
equilibrium property. To go beyond linear response and calculate the full
current—voltage characteristics we need to consider the detailed kinetics
of the many-particle system. Even for linear response, Eq.(6.3.4) needs to
be modified if we consider more complicated structures like quantum dot
arrays where the charging energy does not have the same value U, for all
states (see for example G. Klimeck et al. (1994), Phys. Rev. B, 50, 2316,
5484 and references therein).

The differences between Eqs.(6.3.3) and (6.3.4) are insignificant if a
large number of one-particle levels are involved and N is large. This is
usually the case in metallic systems. It should be noted that the work on
semiconductor quantum dots that we have described above was preceded
by a lot of work on arrays of metallic islands where the one-particle levels
are essentially continuous. For a discussion of the ‘orthodox theory’ appli-
cable to this regime we refer the reader to Ref.[6.7].

We will not go into the phenomenon of single-electron tunneling in any
more detail since this is a frontier topic in which our understanding is still
in a state of rapid evolution. It is quite likely that in the coming years we
will see many exciting developments in this field that will have important
implications for both basic and applied physics. The above discussion is
simply intended to alert the reader to this new direction in mesoscopic
physics that requires a change in our way of thinking. We generally
assume that even in an interacting system we can describe conduction
processes in terms of individual quasi-particles that move in an average
field (to be calculated self-consistently) produced by the surroundings.
This viewpoint has been adequate for everything else that we have
discussed in this book, but single-electron tunneling requires us to revise
this conceptual framework.

Summary

Two important paradigms of mesoscopic transport have emerged from the
study of artificial double-barrier structures, namely, resonant tunneling
and single-electron tunneling. Resonant tunneling involves the flow of
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current through the discrete states formed between the barriers. The reson-
ant tunneling current per transverse mode is given by

2¢ LD

Ip
h I‘1 +rz

(same as Eq.(6.1.16))

where I'; and I', are the energy broadening of the level due to the
coupling to the leads through barriers 1 and 2 respectively. Scattering
processes inside the well have little effect on the total resonant current.
However, this is not true when the device is biased past threshold. The
off-resonant current flowing under these conditions depends strongly on
the scattering rate, I',. The physics of the scattering must be properly
taken into account in order to understand the dependence of the off-
resonant current on the different parameters (I'y, I'; and I'y).
Single-electron tunneling is observed in double-barrier structures having
a small cross-sectional area. If the well is long enough that the energy

levels are very close together we do not expect to be able to resolve the
resonant tunneling current through the individual levels. But if the capaci-

tance (C) of the structure is small enough, we can still observe tunneling
through discrete levels spaced by e*/C. These discrete levels arise not
from the wave nature of electrons (size quantization) but from their
particle nature (charge quantization). This effect requires us to revise the
one-particle picture that we are accustomed to.

Exercises

E.6.1 Consider an AlIGaAs—GaAs-AlGaAs resonant tunneling diode with
barrier widths of 50 A and a well width of 50 A. Assuming that the barrier
height is 300 meV estimate I't, = I'z. Calculate the fraction of the current
that is coherent, if the phase-relaxation time is ~ 1 ps.

E.6.2 Estimate the peak current density for the diode in E.6.1 neglecting
the change in I'L and I'r under bias. Assume w&; = 10 meV.

E.6.3 Show that the transmission probability corresponding to the scat-
tered current is given by

LT,

To(EL) mw —® —
s(Ev) L+ +T,

Ap(EL - E) (6.2.13)
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E.6.4 Single-electron tunneling Consider a double-barrier structure with
two states having energies E; and E, as shown in Fig. E.6.4 (neglect spin).
Apply the principles of equilibrium statistical mechanics to calculate the
number of electrons inside the structure at T = 0 K, as a function of the
Fermi energy E;. Use Eq.(6.3.4) to show that there are two peaks in the

Fig. E.6.4. Double-barrier structure with two discrete states.

conductance spectrum G(Ef) which occur at the energies where the
number of electrons inside the structure changes from zero to one and
from one to two. This is a consequence of the general principle that a
structure can conduct only if the number of particles inside it can
fluctuate between (at least) two possible values.

Further reading

A good collection of articles on the physics and device applications of
resonant tunneling devices can be found in

[6.1] Physics of Quantum Electron Devices, ed. F. Capasso (1990),
Heidelberg, Springer-Verlag.

Resonant Tunneling in Semiconductors: Physics and Applications, eds. L. L.
Chang, E. E. Mendez and C. Tejedor (1991). New York, Plenum Press.
[6.2] The Physics and Applications of Resonant Tunnelling Diodes,
H. Mizuta and T. Tanoue (1995), Cambridge University Press.

Some recent references on single-electron tunneling are

[6.3] Single Charge Tunneling: Coulomb Blockade Phenomena in
Nanostructures, eds. H. Grabert and M. H. Devoret (1992), NATO ASI
Series B, Physics, vol. 294, New York, Plenum Press. In the last chapter
of this book Averin and Likharev explore the possibility of device appli-
cations based on single-electron tunneling.
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[6.4] Z. Phys. B (1991). Special Issue on Single Charge Tunneling, 85,
317.

[6.5] Staring, A. A. M. (1992). ‘Coulomb blockade oscillations in quantum
dots and wires’ Ph.D. Thesis, Technical University at Eindhoven.

[6.6] Kastner, M. (1993). ‘Artificial atoms’, Physics Today, 46, 24.

We have only discussed the recent work on single-electron tunneling in
semiconductors. For an account of the earlier work on metals, see

[6.7] Averin, D. V. and Likharev, K. (1991) in Mesoscopic Phenomena in
Solids, eds. B. L. Altshuler, P. A. Lee and R. A. Webb, Amsterdam
Elsevier.
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Optical analogies

7.1 Electrons and photons: conceptual similarities
7.2 Linear optics

7.3 Non-linear optics

7.4 Coherent sources

The propagation of electrons has many interesting similarities with the
propagation of light. Mesoscopic phenomena often have familiar optical
analogies. We have generally not emphasized these analogies since they
can be somewhat distracting especially if one is unfamiliar with the opti-
cal counterpart. However, the analogies are quite interesting and can pro-
vide useful insights. In this chapter we will briefly explore the similarities
and differences between electron waves and electromagnetic waves. The
discussion is qualitative and can be read without much reference to any
other chapter in this book.

7.1 Electrons and photons: conceptual similarities

The propagation of photons is described by the Maxwell equation (in
simplified form)

- Ly (7.1.1a)
UE

atl
just as the propagation of electrons is described by the Schrédinger equa-
tion

2
AN (7.1.1b)
ot 2m
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This analogy may not seem quite right since W is the wavefunction
whose square gives the probability while the electric field E is a measur-
able macroscopic field. However, we can view the electric field as the
wavefunction of the photon although this is not the interpretation Maxwell
had in mind when he wrote his famous equations. Suppose we have
solved Maxwell’s equations to find that a given medium has a trans-
mission probability of 50%. This means that if an electromagnetic wave
carrying 1 W/cm? is incident on the medium, the transmitted wave will
be carrying only 0.5 W/cm?® However, we could also interpret it as saying
that if a photon is incident on the medium then there is a 50% probability
that it will be transmitted. If one million photons are incident then on the
average half a million will be transmitted. With this interpretation, E for
photons becomes a concept analogous to the concept of W for electrons
and the Maxwell equation plays the same role for photons as the
Schrddinger equation plays for electrons. For further discussion of this in-
terpretation of the Maxwell equation we refer the reader to D. Marcuse,
(1980), Principles of Quantum Electronics, Chapter 10, (New York,
Academic Press) and to R. P. Feynman (1985), QED: The Strange Theory
of Light and Matter (Princeton University Press).

Frequency vs. energy

In describing steady-state phenomena involving electromagnetic waves it
is common to talk in terms of monochromatic waves having a single fre-
quency. Similarly with electrons it is convenient to talk in terms of mono-
energetic waves:

E(r,t) = E(r)exp(-iwt) W(r,t) = ¥(r) exp(-iEt/h)

Substituting these forms for the solution into Eqs.(7.1.1a,b) we obtain the
time-independent forms of these equations:

VA - i—'z"(E _UyW (7.1.2a)

and V’E = -w*ucE (7.1.2b)

Dispersion relation

In a homogeneous medium the solutions to Egs.(7.1.2a,b) can be ex-
pressed in the form of plane waves exp[ik.r], with the magnitude of the
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wavevector k related to the frequency (or energy) by the dispersion rela-
tion:

k= w?ue and kK= i—'z"[E -U] (7.1.3)

The correspondence between photons and electrons is summarized in Fig.
7.1.1.

Before proceeding we should mention that the Schrédinger equation in
the presence of a vector potential (representing magnetic fields)

[(P_-Eéﬁ . U]q:(r) - EW(r) (7.1.4)
2m

looks somewhat different and we are not aware of any simple analogies
with the propagation of light that would help us understand the behavior
of electrons in a magnetic field. As we know, the magnetic field affects

Photons Electrons

E v

Polarization Spin (neglected in our discussion)
P ~Re[E*xH]

~ Re{ -i¥ * V¥
~ Re[—iE* x (V x E)] I e[ ' ]

exp(-iwt) exp(~iEt/h)
V2E = —~0*ucE VY - - 2h—':'[E -U
Dispersion
Relation
kK = w’ue K’ -2h—'2n[E—U]
(7] E
U
k k

Fig. 7.1.1. Correspondence between photons and electrons.
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the electronic motion differently depending on its strength. At low mag-
netic fields one is in the ‘geometrical optics’ limit and the motion of
electrons is described just as well by Newton’s laws. An electron with
velocity v in a magnetic field B describes a circular trajectory of radius
mv/eB. But at high magnetic fields, Landau levels form and there is
a spectacular suppression of backscattering leading to the quantum
Hall effect. None of this, we believe, has any optical analogs.

7.2 Linear optics

Most interesting structures involve wave propagation through an inhomo-
geneous medium of some kind. For photons this could mean a medium
with a spatially varying dielectric constant £(r) while for electrons it
could mean a medium with a spatially varying potential U(r). Looking at
Eqgs.(7.1.2a,b) it is apparent that the two are analogous. Photons propagat-
ing through a medium with a non-uniform dielectric constant &(r) and
electrons propagating through a medium with a non-uniform potential
U(r) are described by similar looking equations with the following corre-
spondence:
0+ UE(Y) <> ﬂ(—Eh_—U@ (7.2.1)
A simple example of this analogy can be found in the way waveguides
are constructed. We know that electrons tend to be confined in layers
having a lower potential energy than the surroundings. For example, quan-
tum wells are formed by sandwiching a layer of GaAs (with a smaller
potential energy) between two layers of AlGaAs. From the correspon-
dence stated above (see Eq.(7.2.1)) we would expect light to be guided in
a region with a higher dielectric constant &(r) (see Fig. 7.2.1). Indeed this

Dielectric Potential
‘Oonstant
—> >
z z
Photon waveguide Electron waveguide

Fig. 7.2.1. Light is guided in the layer with the higher dielectric constant (¢ (r)) while
electrons are guided in the region with the lower potential (U(r)).
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Fig. 7.2.2. Resistance measurement can be viewed as a scattering problem where each
contact launches electrons toward the conductor which acts as a scatterer.

is precisely how optical waveguides are constructed and the mathematics
for calculating the wavefunctions in quantum wells is very similar to the
mathematics used in calculating the field profile in optical waveguides.

The Landauer approach to transport underlines the fact that any con-
ductor is essentially a scatterer and that the measurement of conductance
is essentially a measurement of the scattering properties of the conductor
(Fig. 7.2.2). The Landauer formula (see Eq.(2.5.3)) states that the conduc-
tance G at low temperatures is proportional to the sum of the transmission
probabilities T(m < n) from all possible input modes » to all possible
output modes m at the Fermi energy E:.

G~22T(m<——n;Ef)

On the other hand, light scattering experiments allow us to probe the
individual transmission probabilities T(m < n; @) by measuring the
scattered wave amplitudes in various directions (modes) in response to
incident waves in a particular direction (mode). In conductance measure-
ments we do not get this ‘mode-resolved’ information: what we measure
represents a sum over all input and output modes.

This drawback is partially overcome by studying conductance as
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a function of magnetic field. For example, the weak localization effect
discussed in Chapter 5 can be detected in optical experiments by
measuring the backscattering as a function of angle (see Fig. 5.2.2). But
conductance measurements do not give such angle-resolved information.
The conductance is a little lower due to the enhanced backscattering, but
that could easily be ascribed to a variety of other causes (maybe the
conductor is not as wide as we think!). What allows us to identify the
effect unambiguously is its variation with magnetic field as discussed in
Section 5.3.

Another point to note is that at higher temperatures the conductance is
not determined just by the scattering properties of the electrons with
energy E; All electrons having energies within a few kg7 of the Fermi
energy contribute. In optics this is analogous to using a non-
monochromatic source with a spread in the frequency w. The scattering
viewpoint helps emphasize the many analogies between the propagation
of electron waves through different types of conductors and the propa-
gation of electromagnetic (or photon) waves through different types of
media.

Let us look at a few examples.

Geometrical optics

Focusing by optical lenses is a well-known phenomenon. From the corre-
spondence stated above (see Eq.(7.2.1)), we would expect that an elec-
tron lens would be formed by a convex metallic gate with a voltage
applied to it such that the potential energy U underneath it is lower than
that in the surrounding region. This requires an increase in the electron
density (or in other words an accumulation of electrons) under the lens. In
practice it is usually more convenient to deplete the lens area. To obtain
a focusing action it is then necessary to use a concave lens as shown in
Fig. 7.2.3. With light too we would obtain focusing with concave lenses if
the lens were made of a material with a dielectric constant lower than
that of the surroundings (which is not the usual case).

Electron focusing has recently been demonstrated in a high mobility
2-DEG (u = 10’ cm?%V s) in GaAs. It was shown that the current reaching
the detector (marked ‘D’ in Fig. 7.2.3) from the emitter (marked ‘E’)
exhibits a peak at a particular voltage on the lens when the focal length
is just right. Of course, electron focusing experiments as such are not
novel. Far better focusing apparatus are routinely manufactured in tele-
vision sets or electron microscopes. What is novel is the fact that the
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Fig. 7.2.3. Photograph of the sample used to demonstrate focusing. Reproduced with
permission from J. Spector, H. L. Stormer, K. W. Baldwin, L. N. Pfeiffer and
K. W. West (1990), Appl. Phys. Lett. 56, 1290, Similar results were reported by
U. Sivan, M. Heiblum, C. P. Umbach and H. Shtrikman (1990), Phys. Rev. B,
41,7937.

experiments are conducted in a solid and not in vacuum. Typically such
experiments would not work in solids because of the strong scattering
processes. However, the extremely high mobility of the samples used in
these experiments leads to scattering lengths ~ 60 um. which is longer
than the length of the device. Consequently a significant fraction of the
injected electrons can get from one contact to another without being
scattered.

Electron focusing experiments belong to the category of ‘geometrical
optics’, where the potential energy varies slowly on the scale of an elec-
tron wavelength. Such phenomena are not really quantum mechanical in
origin. They can be understood without invoking the wave nature of elec-
trons. In other words we can describe focusing phenomena simply in terms
of Newton’s laws; it is not necessary to use the Schrédinger equation.
Also, such phenomena can be observed even if the phase-relaxation
length is short, since phase plays no role here. The relevant length scale
is the mean free path determined by the momentum relaxation length.

Wave optics

If the potential varies rapidly on the scale of a wavelength then we have
phenomena analogous to ‘wave optics’ which cannot be described by
Newton’s laws. The classic wave optical experiment is the Young’s
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Fig. 7.2.4. A “double-slit’ experiment in high mobility GaAs. (a) Schematic picture

of the structure. The dark lines are metallic gates deposited on the surface of a

GaAs/AlGaAs heterostructure (see Section 1.1) that are used to deplete the

underlying layer. (b) Measured Vp as a function of V. L is the separation between

the emitter (E) and the detecting probe (P). (Adapted with permission from Figs. 1

and 2 of A. Yacoby, U. Sivan, C. P. Umbach and J. M. Hong (1991), Phys. Rev. Lett.
66, 1938)

double-slit experiment (for a very interesting discussion comparing the
double-slit experiment for electrons and photons, see R. P. Feynman
(1965), Lectures on Physics, vol.Ill, Chapter 1 (New York, Addison—
Wesley)). Similar experiments with electrons in GaAs have been reported
using very high mobility samples (see Fig. 7.2.4).
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Electrons are injected from the emitter (marked E) through a small
orifice between two gates (which deplete the underlying layer) and are
detected by the probe at the other end (marked P). The probability that an
injected electron from the emitter will transmit to the probe is determined
by the sum of the amplitudes associated with all the classical paths con-
necting the emitter and collector orifices. We could divide all such paths
into two distinct groups: those that lie in the upper half and those that lie
in the lower half. Since we neglect all scattering processes we do not
need to worry about complicated paths that lie in both halves. Let a; and
a; be the total amplitudes associated with the two groups of paths, so that
the probability of an electron being detected at the collector is propor-
tional to the squared magnitude of the sum of @, and a,. We can write the
transmission function as

T~la+af =|al +|a| +2|a]|a: |cosd

where 8 is the phase difference between @, and a2. A potential V; changes
the surface potential Us (= aeV,, o ~ constant) and hence the wavenum-
ber k for all the paths lying in the upper half (see Eq.(7.1.3)), thus
changing 6.

Ak = %[szE —\2m(E-Ty)|= A8 = Akd = \/%d[l—xll— %&]

where d is the gate length. We thus expect the voltage Vp (which is pro-
portional to the transmission) to oscillate periodically as a function of
[1 — (ceVy/E)]*2. This is observed experimentally as shown in Fig. 7.2.4.
Also the period of oscillation is smaller if the gate length d is made
longer, as we would expect from the above discussion.

Diffusive optics
So far we have been talking about clean ballistic conductors where elec-
trons can propagate from one contact to another without appreciable
scattering. Ballistic transport is a relatively recent phenomenon. More
commonly we are interested in electronic transport in diffusive conductors
which is like the passage of photons through ‘foggy’ media. Propagation
of electromagnetic waves through a random medium with multiple
scattering is a problem of great practical importance that occurs in many
different contexts. For example, as we discussed in Chapter 5, the
phenomenon of weak localization arises from the enhanced back-
scattering from a random array of scatterers as shown in Fig. 5.2.2. Similar
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effects have been observed in connection with radar scattering from the
clouds. It is interesting to note that a figure similar to Fig. 5.2.2 appears in
the book by Ishimaru entitled Wave Propagation and Scattering in Random
Media (New York, Academic Press, 1978) (see Fig. 15-3, p.311).
However, the effect of magnetic field on weak localization (which makes
it observable in solids) has no optical counterpart.

One of the significant discoveries in mesoscopic physics is the phe-
nomenon of conductance fluctuations (see Section 5.4) which arises from
correlations between the transmission probabilities T(m,n) for different
output and input modes m and n. In optical experiments the same basic
phenomenon shows up in the form of correlations between the intensities
of light transmitted through a random medium in different directions (see
Ref. [5.5]).

Classical wave propagation through random media has been described
theoretically from two different approaches. One is the transport theory
approach (also known as radiative transfer) where the basic quantity is
the intensity distribution I(r,k) at different points r and wavevectors k.
We could describe this as a Boltzmann approach to photon transport. The
other approach, based on the wave equation, is often referred to as multi-
ple scattering theory. The basic quantity in this approach is the coherence
function describing the correlation between the electric fields at different
points in space and time. This is analogous to the Green’s function for-
malism that we will discuss in Chapter 8. In the book by Ishimaru (see
Section 14-7) quoted above, there is an interesting discussion of the con-
ditions under which the equations of multiple scattering theory can be
reduced to the equations of radiative transfer. Similar questions regarding
the conditions under which the equations of quantum transport (the
Green’s function formalism) reduce to the Boltzmann equation have
occupied many theorists interested in electronic transport. We will also
discuss this question briefly in Chapter 8.

7.3 Non-linear optics

Earlier we pointed out the similarity between the Schrédinger equation

and Maxwell’s equation and noted that the potential energy for electrons

played a role similar to that played by the dielectric constant for light:
2m(E -U(r))

w+Jue(r) < — (same as Eq.(7.2.1))

The field of non-linear optics relies on materials having a dielectric
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Fig. 7.3.1 (a) Bistable path of the resonant energy as a function of the applied bias in a
resonant tunneling device. (b) Optical analogy.

constant that is a function of the light intensity. For electrons this corre-
sponds to having a potential U (analogous to the refractive index) that is
a function of the electron density (analogous to the intensity of light).
Since electrons are charged particles this is a strong zero-order effect in
contrast to optical non-linearities which are weak second-order effects.

In Chapter 6 we discussed the resonant tunneling diode where an elec-
tron is trapped in the region between two barriers (Fig. 7.3.1a). As a result
only electrons having an energy equal to the resonant energy E: can
transmit through the structure. A build-up of electron density in the reso-
nant level causes an increase in the potential U in the well thus shifting
the resonant level to higher energies. We can write

E.=E' +Kn, (7.3.1a)

where E'; denotes the resonant energy if charging effects were absent, n.
denotes the electron density inside the well and K is a constant depend-
ing on the effective capacitance. As we increase the applied bias we pull
down the resonant energy. Once E'; crosses u there is charge accumula-
tion in the well, n, increases and so the resonant energy E: changes
slowly as shown: Eventually the resonant energy becomes zero and dis-
charges suddenly causing a sudden lowering of E; from ‘A’ to ‘B’. If we
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now decrease the bias, the resonant energy will follow a different path
from ‘B’ to ‘C’ since there is no charge in the well. It will then charge up
to ‘D’. This difference in the path of the resonance for increasing and de-
creasing bias can lead to bistability in the current—voltage characteristics.
Specially designed double-barrier devices are needed to distinguish this
intrinsic bistability from the extrinsic bistability exhibited by any device
having a negative differential resistance. We will not discuss these de-
tails since our main purpose here is to point out the analogy with optics.
For further details see Zaslavsky et al. (1988), Appl. Phys. Lett. 53, 1408;
Alves et al., (1988), Electron. Lett., 24, 1190; and G. A. Toombs and
F. W. Sheard (1990), Chapter in Electronic Properties of Multilayers and
Low-dimensional Semiconductor Structures, eds. J. M. Chamberlain et al.,
Plenum, New York.

Optical bistability in non-linear Fabry—Perot interferometers is a very
well-known phenomenon in optics. The resonant frequency f; of a Fabry—
Perot interferometer is related to the distance d between the two mirrors
by the relation

fi= ﬁ x (integer)

where n is the refractive index of the medium and ¢ is the velocity of
light. In a non-linear medium the index is intensity dependent so that we
could express the resonant frequency in a form analogous to Eq.(7.3.1a)
for the resonant energy of a resonant tunneling diode:

fi=fr+ Kl (7.3.1b)

where f) denotes the resonant frequency if non-linear effects were
absent, I,, denotes the light intensity inside the interferometer and K is a
constant depending on the strength of the non-linearity. Suppose we could
change f' by some external means. We would then observe a bistable
behavior of the resonant frequency analogous to that described above for
the electronic case. Once f} comes close to the frequency of the
incident light, the light intensity will build up and cause the resonant
frequency to change slowly (or faster depending on the sign of K). But the
intensity drops quickly to zero when the resonant frequency has changed
sufficiently that the incident frequency falls outside the pass-band of the
interferometer. In practice the experiment is usually done by changing the
frequency of the incident light instead of changing f*, but the effect is
the same.
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Another example of the analogy between charging effects and nonlin-
ear optics can be found in the article by Bergmann (see Phys. Rev. B, 35,
4205 (1987)) where the effect of electron—electron interaction on weak
localization phenomena has been shown to be similar to diffraction by
holograms.

However, it should be noted that there are subtle differences between
electronic and optical phenomena. With light, non-linear effects are usu-
ally accompanied by a large build-up in the intensity in a particular
mode. But with electrons there can be no more than one electron in one
mode. Non-linear effects usually arise from a build-up of electron density
in many modes. Recent work has shown that with electrons the non-
linearity is large enough that even a single electron can cause a signifi-
cant shift in the resonant energy, leading to the single-electron tunneling
effect discussed in Section 6.3. But this phenomenon is very differ-
ent from the non-linear optical phenomena discussed above. We are not
aware of single-photon effects analogous to the single-electron tun-
neling phenomenon. An interesting question is whether miniature optical
cavities can be constructed with a non-linearity strong enough for this to
be observed.

7.4 Coherent sources

An important ingredient in interference experiments is a ‘coherent’
source. Let us try to explain the meaning of the word ‘coherent’ which
can denote different things in different contexts. Generally a light beam
will contain many temporal and spatial frequencies, that is, its intensity
I(w,k) will have a large spread in both the frequency w and the wavevec-
tor k. By passing it through a filter or monochromator we can generate a
beam with a very narrow frequency spectrum. Such a beam has high tem-
poral coherence (time is the Fourier transform of ) but it may not have
much spatial coherence since there can still be wavevector components k
pointing in all directions.

To generate a beam having spatial coherence as well, we need a col-
limator that selects out only the wavevectors lying within a narrow range
of angles. The easiest way to do so is to use the light from a source that is
located very far away. The region of observation then occupies a very
small fraction of the total solid angle surrounding the source. Sunlight, for
example, has excellent spatial coherence.

Similar arguments hold for electron waves as well. Electron diffraction
experiments are routinely used to probe crystal structures and mono-
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energetic well-collimated sources (that is, sources with high spatial and
temporal coherence) are used for the purpose. In mesoscopic conductors
temporal coherence is achieved at low temperatures since only the
electrons having the Fermi energy contribute to the conductance. Spatial
coherence is achieved by going to small-area devices having a limited
number of transverse modes. However, there is a basic difference with
light, as we saw in Section 7.3. There is no limit to the number of photons
one can put into a particular mode (w,k) but the exclusion principle
limits the number of electrons that can occupy a particular mode. As a
result, there is no limit to the amount of power per unit frequency that a
single-moded fiber can transmit but a single-moded quantum wire can
only transmit a maximum of 80 nA in an energy range of 1 meV (= 2e/h).

One of the most significant developments in the history of optics is the
invention of the laser which has made possible a wide variety of experi-
ments that were inconceivable before the advent of the laser. This is
largely because laser sources concentrate very large amounts of power
into a single coherent beam, while coherent beams derived from thermal
sources by filtering and collimating tend to be very weak since we are
selecting a small fraction of the total incoherent output. But there is a
more fundamental difference between laser sources and filtered thermal
sources.

With thermal sources interference phenomena can only be observed if
the interfering beams are derived from the same source as in the famous
double-slit experiment (see Fig. 7.4.1a). Interference requires that there be
multiple paths from the same source (initial state) to the same detector
(final state). But with laser sources it is possible to observe interference
between separate sources as shown in Fig. 7.4.1b. The reason is that all
the photons from a laser are in a coherent state (this is different from the
coherence discussed above) such that their electric fields add up to give
a macroscopic field with a definite magnitude and phase, just like the
output from low frequency oscillators. Two separate sources thus have a
definite phase relationship that can be detected in an interference experi-
ment. But the electric fields due to photons from a thermal source are all
randomly phased so that there is no definite phase relationship between
independent sources. For further discussion of this point see D. Marcuse
(1980), Principles of Quantum Electronics, Chapter 5 (New York,
Academic Press).

With normal electrons there is no equivalent of a laser source because
of the exclusion principle. Thus all the interference phenomena observed
with normal electrons are of the single source variety (Fig. 7.4.1a).
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Fig. 7.4.1. Double-slit interference experiment with (a) single source and (b) separate
sources. In (b) interference can only be observed with laser sources or
superconducting electrons but not with thermal sources or normal electrons.

However, superconducting electrons are analogous to laser sources where
numerous electrons occupy a single state coherently to build up a macro-
scopic wavefunction with a definite phase. This makes it possible to ob-
serve interference between separate sources. The Josephson effect is an
example of an interference phenomenon between two separate sources,
namely, the two contacts (see R. P. Feynman, Lectures on- Physics
(1965), vol.lll, p.21-14, (New York, Addison—-Wesley)). An interesting
development in mesoscopic physics is the application of the transmission
formalism to small devices with superconducting components (see, for
example, S. Datta er al. (1996), Phys. Low-Dim. Struct. 3, 1 and references
therein).

Summary

Maxwell’s equation for photons is analogous to the Schrodinger equation
for electrons, with the electric field E for photons playing the role played
by the wavefunction ¥ for electrons. Comparing the time-independent
forms of Maxwell’s equation and the Schrddinger equation it is evident
that the propagation of electrons through a region with a varying potential
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energy is analogous to the propagation of light through a region with a
varying refractive index. Experiments on mesoscopic samples have
demonstrated the electronic analog of geometrical optics, wave optics,
guided waves, diffusive optics etc.

Optical non-linearity is a weak second-order effect arising from the de-
pendence of the refractive index on the light intensity. The electronic
analog of this is the dependence of the potential on the electron density
which is a strong effect because electrons are charged particles. Indeed
the effect is so strong that even single-electron charging effects can be
observed in appropriate structures. The author is not aware of analogous
single photon non-linearities.

An important point to bear in mind is that normal electrons are like
photons from thermal sources. Superconducting electrons, on the other
hand, are like laser sources and could lead to interesting new phenomena
when combined with mesoscopic structures.

Exercises

E.7.1 (a) Consider a beam of electrons with energy E incident at an
angle on an interface where the potential energy steps up from 0 to U as
shown in Fig. E.7.1. Derive a ‘Snell’s law’ relating the incident and
transmitted angles.

E

oI

——— Z

Fig. E.7.1. A beam of electrons with energy E is incident at an angle on an interface
where the potential energy steps up from O to U.

(b) Suppose the potential energy is constant across the interface but the
effective mass changes from m, to m,. What is the new ‘Snell’s law’?
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So far in this book we have described the effect of electron—phonon or
electron—electron interactions in phenomenological terms, through a
phase-relaxation time. In this chapter we will describe the non-equilib-
rium Green’s function (NEGF) formalism which provides a microscopic
theory for quantum transport including interactions. We will introduce this
formalism using simple kinetic arguments based on a one-particle picture
that are only slightly more difficult than those used to derive semiclassi-
cal transport theories like the Boltzmann equation. This heuristic descrip-
tion is not intended as a substitute for the rigorous descriptions available
in the literature [8.1-8.8]. Our intention is simply to make the formalism
accessible to readers unfamiliar with the language of second quantization.
We will restrict our discussion to steady-state transport as we have done
throughout this book.

The NEGF formalism (sometimes referred to as the Keldysh formalism)
requires a number of new concepts like correlation functions which we in-
troduce in Sections 8.1 and 8.2. We then describe the formalism in

293
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Sections 8.3-8.6. In Section 8.7 we relate it to the Landauer—Biittiker for-
malism which, as we have seen, has been very successful in describing
mesoscopic phenomena. For non-interacting transport the two are equiva-
lent, and the added conceptual complexity of the NEGF formalism is not
necessary. The real power of this formalism lies in providing a general
approach for describing quantum transport in the presence of interactions.

The Boltzmann formalism has found widespread use in describing a
wide variety of semiclassical transport phenomena. It combines Newton’s
law with a probabilistic description of the dissipative interaction with
random scattering forces. The NEGF formalism, on the other hand, com-
bines quantum dynamics with a statistical description of the dissipative
interactions. In Section 8.8 we discuss the conceptual similarities and
differences between the two formalisms.

Much of our understanding of electronic transport is based on the one-
particle picture where an individual particle is assumed to move in an
effective potential due to its interaction with the surroundings. As meso-
scopic conductors get smaller and begin to resemble large molecules, this
concept of an effective potential is breaking down as we saw in Section
6.3 in our discussion of single-electron tunneling. In Section 8.9 we briefly
discuss the applicability of the NEGF formalism to this novel transport
regime involving strong interactions.

We end this chapter with a simple analytical example illustrating the
application of this formalism to a concrete problem, namely, the effect of
phonon scattering on the current—voltage characteristics of resonant tun-
neling diodes (Section 8.10).

8.1 Correlation and scattering functions

A number of different Green’s functions like G*, G*, G* and G appear in
the NEGF formalism which all look similar to the beginner. However, the
physical significance of G® and G* is very different from that of G and
G’ . Similarly the physical significance of the self-energy functions =R, =4
is very different from that of <, 2>. We will only discuss the functions G~,
G?, Z° and Z” in this section. In the next section we will discuss the
retarded and advanced functions G®, G*, =} and =*. Let us start with a
concept that is closely related to the correlation function G*, namely, the
density matrix.
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Density matrix

Consider a homogeneous conductor whose eigenstates are plane waves
labeled by their wavevector k:

|K) = %e““f (V = normalization volume)

In the semiclassical picture we can describe the electrons by specifying
the distribution function f{(k) which tells us the number of electrons occu-
pying a particular state k. But in the quantum mechanical picture this is
not enough. We also need to specify the phase-relationship among the dif-
ferent states. To describe the state of the electrons fully we have to define
a density matrix p(k,k'). An electron with a wavefunction

quk)

has a density matrix p(k,k)=¥W, so that an electron occupying a
standing wave state

gL
N A

has a density matrix of the form

|+k) + —=| -k) = /2 cos(k.r)

(+k -K)
+k) {05 0.5
- 05 05
This, however, is very different from having a system of electrons 50% of

which occupy the state |k) and 50% occupy the state |-k). The density
matrix is then given by

5 10 0 0] [05 O

os [l Jrosx [0 - &)

In the semiclassical picture we implicitly assume a situation like this,
where all off-diagonal elements are negligible. We can then describe the
electrons by a distribution function f{(k) given by the diagonal elements
of the density matrix p(k,k). This is an accurate picture if the phase-
relaxation length is very short. But in phase-coherent conductors the

off-diagonal elements cannot be ignored.
As we mentioned in Chapter 3, there is a simple optical analogy to
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this. A beam of unpolarized light is a 50-50 mixture of photons that are
polarized in the x-direction and photons that are polarized in the
y-direction. So is a beam of light that is polarized at 45 degrees to the
x-axis. But the two are physically very different and the difference is
clearly expressed in terms of the density matrix:

(x (x

O el 0 1ok o

(unpolarized) (45-degree polarized)

Different representations

It will be noted that although we have used a representation in terms of
k-states to define the correlation function, we can always transform to
other representations using an appropriate unitary transformation. For ex-
ample we could transform to a real space representation as follows:

p(e,r) = (rlp|r') = N (r|k) (K p[k')(K'|)
kk'
- .‘1;2 p(k K')exp[i(kr -k'¥)] (V = normalization volume)
kk

In principle it is possible to find a representation that diagonalizes the
density matrix. In such a representation there are no phase-correlations to
worry about and we could use semiclassical reasoning. In practice it may
not always be convenient to find this special representation or to use it.

Correlation function (G or —iG*)
We have seen that we need to generalize the concept of a distribution
function f(k) into a density matrix p(k,k") in order to include additional
information regarding the phase-correlations. We could include the time
coordinate in our description by defining a time-varying density matrix:
p(k,k';). Although this concept is often used, especially in the treatment
of systems with discrete levels, it is not fully general. In general we need
a two-time correlation function of the form G*(k,k';z,¢")

[ —= G '(kK';8,1")
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that tells us the correlation between the amplitude in state k at time ¢ and
that in state k' at time #'. In steady-state problems, the correlation func-
tion depends only on the difference between the two times and can be
Fourier transformed to yield

G'(kk';E) = f -;;G“(k,k’;r)e‘i“/”dr (T=t-t)  (8.11)

One way to understand the Fourier transform relationship between the en-
ergy E and the difference time coordinate (¢ - ¢') is to note that the wave-
function of a particle with energy E evolves in time with a phase factor of
exp[-iEt/h]. Consequently

WP () ~ exp[-iE( - 'Yh]

This suggests that the Fourier transform of the correlation function with
respect to (¢ — ¢") should yield the energy spectrum. It is interesting to
note that this is exactly how we find the frequency spectrum of the noise
current I(¢) in a device. We Fourier transform the current correlation func-
tion:

I(w) = f (IOI( +T))e ™" dT

As we mentioned earlier, some treatments of quantum transport are
based on the density matrix: p(k,k';t) which is a ‘subset’ of the correla-
tion function obtained by setting ¢ =1.

ks =[G (kK550 _,

It is straightforward to show from Eq.(8.1.1) that this is equivalent to inte-
grating G"(k,k';E) over all energy:

[6*kst)], _, = f %G“(k, K;E)E (8.1.2)

As a result the energy-resolved information is lost making it difficult to
describe scattering processes which transfer electrons from one energy to
another.

In general to describe time-varying transport, we need to use the full
two-time correlation function. Since our interest is confined to steady-
state transport, the correlation function depends only on the time differ-
ence (t-1t) and can be Fourier transformed to obtain G*(k.,k%E)
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as described above. This energy-dependent correlation function is what
we will use throughout this chapter.

We know that the diagonal elements of the correlation function give us
the number of electrons occupying a particular state. From Eq.(8.1.2) we
can write

flk)= [G"(k, k,;t’t')]k-k',t-t' ‘f%Gn(kfk;E)dE

This is true not just in the k-representation, but in any other representa-
tion as well. For example we can write the electron density in real space
as

n(r) = 2 (for spin) x f ZL G"(r,r; E)dE
g

where we have included a factor of 2 for the two spin components assum-
ing these to be degenerate. We can write this in terms of the electron
density per unit energy n(r;E) as follows:

n(r)=2 f n(r;E)YdE where 2xn(r;E)=G"(r,r;E) (8.1.3)

Hole correlation function (G® or +iG”)

In deriving semiclassical kinetic equations we usually balance the
outflow of electrons against the inflow of electrons. The inflow of elec-
trons can alternatively be viewed as an outflow of ‘holes’ (whose number
is given by (1 - f)). We use the quotes as a reminder that we are talking
about holes in the conduction band itself (we are considering only one
band) and not in some other valence band. To describe the outflow of
holes in the quantum formalism we define a hole correlation function GP?
using the same argument as we used above for electrons.

It is difficult to state the difference between the electron correlation
function G" and the hole correlation function GP? precisely without using
the language of second quantization, as we are trying to do. For the
benefit of readers familiar with this language, let us state the difference
in terms of the creation and annihilation operators ax and ax:

G (kK1) = (al (")ax(®)) and G°(kK;t,t) = (ax(t)ai(t))

where (...) denotes the expectation value. In a one-particle description,
the annihilation and creation operators reduce to the one-particle wave-
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function and its complex conjugate respectively. Since wavefunctions
(unlike operators) commute, both G and G® reduce to the same quantity

Wi ()i (1)

in a one-particle description.

Scattering functions

In the semiclassical picture we can define a function $*(k,f) that tells us
the rate at which electrons are scattered out of a state k assuming it is
initially full. In a quantum mechanical description we have to generalize
this concept, too, to include phase-correlations:

Sout (k, t) —_ zout (k, k’ ;t, t')

Once again for steady-state problems the outscattering function depends
only on the difference time coordinate and can be Fourier transformed to
yield an energy-dependent outscattering function °(k,k';E). Similarly
we can generalize the semiclassical concept of an inscattering function
S(Kk,?) to include phase-correlations, and then Fourier transform to obtain
the function £*(k,k";E), which can be viewed either as an electron inscat-
tering function or as a hole outscattering function.

A word about notation

Before proceeding further we should point out that we are using a notation
that is slightly different from the standard notation in the literature. We
have deliberately chosen the notation to reflect the physical meaning of
these functions. The correspondence, however, is quite straightforward:

Classical analog Our notation Standard notation
a-0n G",G? -iG*<,+iG” (8.1.4)
Sin,sout zin’zout —i2<,+i2>

The matrices G*, G®, ™ and =™ are all Hermitian so that their diagonal
elements in any representation are purely real. This set of four functions
G", G?, =™ and =™ provide us with the language needed to include
phase-correlations into a transport theory. If we represent our device by a
set of N nodes (in real space or in momentum space or in some other rep-
resentation), then each of these quantities is a matrix of dimensions
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(N x N) at a given energy E. From hereon we will generally not write the
energy coordinate E explicitly for clarity.

In the following section we will introduce the retarded and advanced
Green’s functions (G*, G*) and self-energies (Z* and £*), following the
standard notation. In addition, the time ordered (G*, £7) and anti-time
ordered functions (G*, £7) also appear in the literature. These are relat-
ed to the other functions by the relations

G"=G*+iG"=G*-iG” @15
GT = —-G® -iG® = -G* +iG" 1)
and similarly for the self-energy functions. We will be presenting the
equations in a form that does not require the time ordered and anti-time
ordered functions. However, these equations can be easily converted to
the form commonly found in the literature (see Exercise E.8.4 at the end
of this chapter).

8.2 Self-energy and the Green’s function

In the last section we have introduced the functions G*, G®, ™ and Z°*
(that is, -iG<, +iG”, —iZ< and +iZ>) which allow us to ‘count the beans’,
that is to keep track of the comings and goings of individual particles. In
addition to these concepts we need another set of functions, namely the
retarded (and advanced) functions (G}, G*, ZF and £*) which allow us to
describe the dynamics of the electrons when they are inside the conduc-
tor. We have already encountered these functions in Chapter 3 (see
Sections 3.3-3.6). To summarize the basic results in matrix notation (see
Eq.(3.5.17))

[E1-Hc-3R]GR=1 = GR=[EI-H.-Z*]"  (821)

The advanced Green’s function G* and the advanced self-energy are the
Hermitian adjoints of the corresponding retarded functions

G*=[G*] and zA-[z*] (8.22)
The Green’s function G® describes the coherent evolution of an electron
from the moment it is injected till it loses coherence either by disappear-
ing into a lead or by scattering into a different state (due to electron—
phonon or electron—electron interactions) where a new coherent trajectory



8.2 Self-energy and the Green’s function 301

is initiated. The self-energy £X describes the effect of the leads and the
interactions on the electron dynamics.

We have seen in Section 3.6 that the spectral function A (= i[G® - G*])
represents a generalized density of states. Since the density of states is
equal to the sum of the electron and hole densities, it seems reasonable
that the spectral function should equal the sum of the electron and hole
correlation functions defined in the last section:

G"+G*=i[G"-G*]=A (8.2.3)

The spectral function A, tells us the nature of the allowed electronic
states, regardless of whether they are occupied or not. The electron and
hole correlation functions G" and G®, on the other hand, tell us how many
of these states are occupied or empty.

Eq.(8.2.1) is written in matrix notation, which can be translated into
any desired representation. In position representation we can write

[E-H]G*(x,r) —fER(r, n)GR(r,r)dr = 8(r-r) (8:24)
where Hc is the usual Hamiltonian operator describing the conductor:

H
¢ 2m

+U(r) (8.2.5)
A is the vector potential representing any magnetic fields while the
potential energy U arises from impurities, boundaries, applied bias etc.

We could visualize the Green’s function G*(r,r') as the wavefunction
at the point r due to a unit excitation at r' (Fig. 8.2.1). If we leave out the
source term on the right of Eq.(8.2.4) we obtain a Schrodinger-like equa-
tion describing the dynamics of an electron inside the conductor:

E¥(r)= HW¥(r)+ f ZR(r,n)W(r )dr 8.2.6)

CONDUCTOR

LEAD p LEADg

r

Fig. 8.2.1. A conductor and two leads p and g connected to it. An excitation at r' sets
up ‘ripples’ that spread outwards. The Green's function GX(r,r') represents the
resulting wavefunction at the point r due to a unit excitation at r'.
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The self-energy term X acts like an effective potential representing the
effect of the interactions. In Chapter 3, the self-energy X arose solely
from the coupling of the conductor with the leads (see Eq.(3.5.19)), since
we were neglecting any interactions inside the conductor. Electron—
electron and electron—phonon interactions give rise to an additional com-
ponent in the self-energy which has to be added to the self-energy due to
the leads. In Section 8.4 we will discuss how these self-energy functions
are calculated. In this section we will just explore the significance of the
self-energy function a little further.

The self-energy ‘potential’ X has two characteristics that distinguish it
from the everyday potential energy terms encountered in quantum
mechanics. Firstly, it is a non-local potential unlike the usual potential
energy term U(r)¥(r). This, however, is not a very fundamental differ-
ence. Even the usual potential energy term would appear non-local if we
were to adopt a momentum representation instead of the position repre-
sentation:

U@ <~ [T0kk)¥(k)dk
A more fundamental difference is that the self-energy potential is not
Hermitian. One of the basic facts we learn in elementary quantum
mechanics is that the Hamiltonian has to be Hermitian in order that prob-

ability be conserved. At steady-state, this means that the divergence of
the probability current density (see Eq.(2.6.6))

IO =5 ((p-eAY¥]* ¥ +¥*[(p-eA)¥])

(p=-iAV is the momentum operator) is equal to zero as long as the
wavefunction W obeys the time-independent Schrédinger equation, But if
the wavefunction obeys the modified Schrédinger equation given in
Eq.(8.2.6) then the divergence is non-zero. To show this we first note that
(see Exercise E.8.1 at the end of this chapter)

ihv.J(r)=([Hc¥]* ¥ - ¥ *[HcP))e 8.2.7)
Using Eq.(8.2.6) to replace HcW we obtain

i R * A *
vV.J(r)= Py ﬂz (r,r)¥*(O¥(r)- 2, nN¥ (r')‘I‘(r)]dr‘

making use of the fact that £* is the Hermitian conjugate of . Hence
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f V. J(r)dr = 7‘1*; f f ¥+ ()W) [} (r,r) - Z4(r, r)Jdrdr

where we have interchanged the variables of integration for the second
term. The right hand side is zero if the self-energy is Hermitian
(Z* = Z*). The quantity (£* - =*) is represented by a special symbol:

SA_SR =il

so that we can write
fV.J(r)dr - % ff\p * (r)®(0)[T(r,r')|drdr

A non-zero T results in the loss of electrons. Physically this loss repre-
sents the end of a coherent trajectory either through the leads or by scat-
tering.

A useful relation

Since the function I' determines the rate of loss of electrons by scattering
(as we have just seen), it seems reasonable to expect that it should equal
the outscattering function defined in the last section:

r=i[zf-34]-z (WRONG)

From this point of view it would seem that if we were to describe the
propagation of holes instead of electrons then we ought to use a different
self-energy function such that

r=i[zf-z*]-z" (WRONG)

since the electron inscattering function represents the hole outscattering
function. The correct answer, however, is that electrons and holes are all
described by the same self-energy function obeying the relation

=i[zR-34]-z" 4 3™ (8.2.8)

The reason is rather subtle. The Green’s function describes the coherent
propagation of an injected electron. Any time the electron exits into a
lead, or interacts with its surroundings, the coherent evolution is over.
That is why it seems that the appropriate lifetime is determined by Z°™.
But suppose another electron tries to enter the conductor from the lead. It
will be blocked by the electron already present inside the conductor and
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it might seem that nothing happened. But the point is that something does
happen. A one-electron state retains coherence as long as it does not in-
terfere with the free evolution of the rest of the world (often referred to as
the reservoir). A blocked transition makes the system evolve differently
from the way it would have evolved if the added electron were not there.
Consequently it terminates one coherent evolution and starts another.
Thus the appropriate inverse lifetime of an electron is given by the sum of
the rate at which it scatters out plus the rate at which it blocks out
electrons from other states trying to displace it (this is equal to the rate at
which a hole, if present, would scatter out). This is the physical
justification for the result stated above. The reader may find the discus-
sion in Section 4.4 of Ref.[8.2] helpful (the author is grateful to Roger
Lake for bringing this discussion to his attention).

8.3 Kinetic equation
The central result of the NEGF formalism is a kinetic equation relating
the correlation functions G" and G to the scattering functions X", Z°:
G"'=G"="G*, G*"=G"z™G* (83.1)

The inscattering function =™ tells us the rate at which electrons come in,
so that it seems reasonable that the electron correlation function G*®
should be proportional to it. Similarly it is reasonable that the hole corre-
lation function G® be proportional to the outscattering function X°*.

To derive the actual relationship between Zi* and G* stated above, we
consider the wavefunction W(r) due to a source term S(r) (cf.

Eq.(8.2.6)):
[E - Hc ]¥(r) - fER(r, n)¥(r )dr = S(r)

Since the Green’s function G®(r,r") represents the wavefunction due to a
delta function source we can write

W¥(r) = f G*(r,n)S(r)dn
Multiplying by the complex conjugate we obtain
Y(r)¥(r)* = j j G*(r,r)G*(r',1})"* S(r.) S(r})* dridri

Noting that G™ represents the correlation between wavefunctions while =™
represents the correlation between sources
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G'(r,r')~¥(r)¥(r')* and E"(n,n)~Sn)S()"
we can write
6"(r,r') = [[ G*(r.0)Z" (0, 1) G* (', )" dndri
= [[ 6"t ) = (0, #) G (e, ¢ Yandry

In matrix notation this can be written as
G" =GR 3 GA

as stated above. One could argue similarly in terms of injected holes to
obtain the second half of Eq.(8.3.1).

Gp - GR zout GA

It should be mentioned that in Eqs.(8.3.1) we have left out an additional
‘boundary term’ that often appears in the literature. This term could con-
tribute to the initial transient in time-dependent problems, but is not rele-
vant to the steady-state problems we are discussing (see Eq.(2.1.6) in
Ref.[8.8]).

A useful identity

We can prove the following identity
A=G*'TG*=G*TGF 83.2)

following exactly the same procedure as we did in Chapter 3 (see
Eq.(3.6.4)). Actually the first half of this relation can be obtained simply
by adding Eqs.(8.3.1). However, we can derive both parts of this relation
starting from the definition of the retarded Green’s function (Eq.(8.2.1)),
as we did earlier.

Equilibrium solution
At equilibrium, all states are occupied according to a single Fermi func-
tion fo(E) determined by the electrochemical potential. Since the correla-
tion functions G" and G® are like the electron and hole densities, while
the spectral function A is like the density of states, it seems reasonable to
expect that at equilibrium

G(E) = fE)AE), G*(E)=(- LHENAE)  (833)
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This is indeed true. Using Eq.(8.3.2), it is easy to see that this solution
satisfies Eq.(8.3.1) provided the scattering functions are given by

I®(E)= fo(E)T(E) and I™(E)=(1- H(E)T(E) (834)

If we are interested in calculating equilibrium quantities, the retarded
Green’s function (G®) contains all the information we need. We can then
calculate the spectral function A = i[G® — G*] and the electron and hole
correlation functions, G" and G®, are known automatically. It is only for
non-equilibrium problems that we need to solve a kinetic equation like

Eq.(8.3.1).

8.4 Calculating the self-energy
In general for non-equilibrium problems, the kinetic equations (see

Egs.(8.3.1))
G*=GRI"G* and GP=GRZI™GA

have to be solved simultaneously with the equations for the Green’s func-
tion (see Eqs.(8.2.1), (8.2.2))

GR =-[E1-H-z“]" G*=[G*]

To proceed, however, we need to know how to calculate the self-energy
and scattering functions (Z®, Z® and ™). That is what we will de-
scribe in this section.

We know that the self-energy and the scattering functions arise from
two different sources, namely, (1) the interaction with the leads and (2)
the phase-breaking interactions inside the conductor. Assuming that the
two are independent of each other we can express these functions in the
form

z“-z$+22‘;
p

z5 +22‘;], D
P

The self-energy and scattering functions with subscript p arise from the
interaction with lead p while those with subscript ¢ arise from phase-
breaking interactions within the conductor. We have already derived the
self-energy due to the leads in Chapter 3 (see Eq.(3.5.19)). We will

(8.4.1)
Dol

out out
T 4 2 =0
p
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summarize the results in the next section when we describe the overall
solution procedure. In this section let us focus on the self-energy and
scattering functions due to the interactions within the conductor.

The actual expressions for the self-energy and scattering functions X%,
=5 and 23" depend on the type of interaction we wish to describe and
the degree of approximation we want to use. These expressions are de-
rived from perturbation theory and one can get increasingly complicated
expressions as we go to higher orders. For a detailed description we refer
the reader to the cited references. Here we will simply summarize the
results for electron—electron interactions in the Hartree-Fock approxi-
mation and for electron—phonon interactions in the self-consistent Born
approximation (SCBA).

Electron—electron interactions
In the Hartree—Fock approximation, electron—electron interactions do not
give rise to any inscattering or outscattering functions:
Se=Zgi=0 = Tp=37+35"=0
But it contributes to the self-energy function:

SR (r,r; E) = Un(r)(r - r) + e (x, 1) (84.2)

The first term is the Hartree potential:
Un(r) = (-G r~E)-L—dr'dE (84.3)
H fon T Amg[r - | o

This is easy to understand if we note that the electron density is related to
the diagonal elements of the correlation function:

A(r) = f E1”—[c;“(r,r;E)]l,_rdE

The second term is the exchange potential:

e2

—dE 844
4ne|r -1 | ( )

Zi(r,r) = —fG“s(r,r';E)
The superscript ‘s’ is added as a reminder that an electron only feels an

exchange potential due to other electrons of the same spin.
The expression for the exchange term is not as obvious as the Hartree
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term but we will not discuss it further. Many-body perturbation theory pro-
vides a systematic method for evaluating the self-energy and scattering
functions to any desired order (see Section 3 of Ref.[8.5] for example).
The Hartree~Fock approximation represents the lowest order result.
Higher order calculations lead to non-zero values of X and Z3" as well.

Electron—-phonon interactions

We will also discuss phonon scattering only in lowest order perturbation
theory. In this approximation

Z2(r,r;E) -fD(r, r; hw) G*(r,r; E - ho)d(hw) (8.4.52)
2P (rYE)= f D(r,v; hw) G* (r, T, E + hw)d(hw) (8.4.5b)

where the function D describes the spatial correlation and energy spec-
trum of the phase-breaking scatterers (#iw > 0 corresponds to absorption
and Aw <0 to emission).

D(xx5h0) = 3| U, |2{e"p[_iq'(r NN e - o) } (8:4.6)

+ exp[+iq.(r - r‘)](Nq +1)d(w + w,)

where N, is the number of phonons with wavevector g and frequency w,
and U, is the potential felt by an electron due to a single phonon with
wavevector g. Assuming that the bath of phonons is always maintained in
thermal equilibrium N, is given by the Bose—Einstein function:

1

No = exp[hwq/kBT] -1
This assumption is fairly good at low bias, though at high applied volt-
ages the phonon bath too could deviate from equilibrium if heat-sinking
arrangements are inadequate. To describe such ‘hot phonon’ effects one
would have to solve a transport equation for the phonons self-consistently
with that for the electrons. Relatively little work has been done on these
lines.

We will discuss the expressions stated above (Egs.(8.4.5a,b)) a little
further. But before we do that let us state the expression for the self-
energy function:
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SX(r,;E) = -T(r,r;E) +%I‘,,(r,r';E) (8.4.7)
where Ty(r,r';E) = 25 (r,r;E) + 23" (1,1 E)
Le(r,r;E")
d I(r,r;E)=P | L~ dE'
an v (,13E) f E_E

The ‘P’ in the last expression stands for principal part. The function
IY'(E) is known as the Hilbert transform of the function T,(E). This rela-
tionship between the two functions ensures that the Fourier transform of
2R is causal; that is, it vanishes for # < 0. To see this we write Eq.(8.4.7)
in the form

zz(E)-% w(E)®[5(E)+2iP (%)]

where the symbol ® denotes convolution. On Fourier transforming the
convolution becomes a product. Since the Fourier transform of the func-
tion

8(E) + 2iP (%)

is proportional to the step function %) the Fourier transform of Z3(E) is
causal:

Zg(t) ~ ()T, (1)

Discussion of Egs. (8.4.5a,b)

A formal derivation of Eqgs.(8.4.5a,b) can be found in the cited references.
Here we will just try to ‘understand’ these results and convince ourselves
that they are reasonable. We will focus on Eq.(8.4.5a) for the inscattering
function; the same arguments can be used to justify Eq.(8.4.5b) for the
outscattering function by using holes instead of electrons. For simplicity
let us consider a single phonon with a wavevector g and frequency @,, so
that

D(r,r;ho) — | U, |z{exp[—iq~(r -1)|N, 8(w - ) }

+ exp[+iq.(r - r‘)](Nq +1)d(w + w,)
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and Eq.(8.4.5a) reduces to

e r s vemor O
+ exp[+1q.(r - r')](Nq +1)G"(r,r;E + hw,)

This expression is interpreted as follows. The inscattering function at an
energy E arises from two sources: due to electrons with energy (E - hw,)
absorbing a phonon and due to electrons with energy (E + hw,) emitting
a phonon. The first process (involving absorption) is proportional to N,
while the second process (involving emission) is proportional to (N, + 1),
as we would expect.

We can get some insight into the meaning of Eq.(8.4.5a) by Fourier
transforming to time domain. Since Eq.(8.4.5a) is a convolution integral,
on Fourier transforming we obtain an ordinary product:

25 (r,r;1) = D(r,r;7) G (r,¥;7) (8.4.8)

The Fourier transformed function D describes the spatial and temporal
correlation of the potential due to the phase-breaking scatterers. To see
this let us write the potential energy felt by an electron due to a single
phonon with wavevector g as

Ur,t)=U, exp[i(q.r - wqt)] +U* exp[—i(q.r - wqt)]

where U, is a complex quantity with a random phase (reflecting the inco-
herent nature of the phonons). Then

D(r,r;t) = (U(r, ) U(Y,t + 7))
=|U, [ {exp[—iq.(r -r)-iw,|+exp[+ig.(r-r)+ iwqr]}

This is consistent with the definition of D (see Eq.(8.4.6)) if we now
multiply the first term (absorption) by the number of phonons N, and the
second term (stimulated + spontaneous emission) by N, + 1.

To understand Eq.(8.4.8), recall that the scattering function X
describes the correlations of the source term S(r) (see derivation of

Eq.(8.3.1)):
[E - He ] ¥(x) - [ £* (1) ¥(n)dri = S(r)

Now the source term is given by UW if there is a scattering potential U.
Hence we can write
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Z5(r,r;7) = (S(r, 1) S(, ¢ + 7))
= (U, ) ¥(r,) U@, t + )W * (V1 + 7))

As a first-order approximation we can write

25 (5, 1;7) ~ (U(r, HU(r,t + 1)) (T, ) ¥ * (1,1 + 7))
- D(r,r;7)G"(r,r';7)

since D represents the correlations of the scattering potential U and G*
represents the correlations of the wavefunction W,

8.5 Summary of solution procedure

We have discussed the individual equations that need to be solved simul-
taneously in order to calculate the correlation function. The purpose of
this section is to put the individual pieces together and present an overall
procedure. The method we will describe is based on the tight-binding
model, which allows us to incorporate the effect of the leads in a straight-
forward manner as discussed in Section 3.5. This approach is basically an
extension of that described by C. Caroli et al. (1971) in J. Phys. C: Solid
State Physics, 4, 916. Alternative approaches based on a continuum repre-
sentation have also been described in the literature (see for example, T.
E. Feuchtwang (1976), Phys. Rev. B, 13, 517 and G. B. Arnold (1985), J.
Low Temp. Physics, 59, 143).

In the tight-binding model, we start by choosing a discrete lattice in
real space spanning the conductor (see Fig. 8.5.1). If there are N points on
the lattice then each of the quantities of interest (like G*, G*, =", Z® etc.)
is a matrix of dimensions (N x N) for each energy. We now proceed as
follows:

CONDUCTOR

P; i k

Fig. 8.5.1. A conductor connected to two leads p and g. A point in lead p is labeled p;
if it is adjacent to point i inside the conductor.
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Step 1: First we calculate the self-energy function due to the leads using
the results obtained in Section 3.5 (see Eq.(3.5.19)):

253G j5E) =187 (Pis 1)
=t Z Xm(Pi)eXp[+ikma]xm(pj) (8.5.1a)
mecp

The parameter ¢ = h*/2ma’ is related to the spacing a between the dis-
crete lattice sites which are labeled by the indices i and j. A site in lead
p is labeled p; if it is adjacent to site i in the conductor. Using Eq.(8.2.8)

XODED) Xn (PO 1,(P3) (8.5.1b)
mEp

Note that the wavenumber &, and the velocity v, for mode m are related
to the energy E through the tight-binding dispersion relation (see
Eqgs.(3.5.8a,b)):

E = g +2t(1 - cos(kna)) and hv,, m GE/okn=2at sin(kna)

where &, is the cut-off energy for mode m.

Next we need the inscattering and outscattering functions. Their sum is
equal to I" (Eq.(8.2.8)). To obtain these functions individually, we assume
that each lead p is maintained in local equilibrium with some Fermi dis-
tribution f,(E). This allows us to write down the inscattering and outscat-
tering functions using the equilibrium solution from Eq.(8.3.4):

25 (0, J;E) = fo(E)T, (G, J5E) (8.5.1¢)

23 (i, E) = (1- fo(ENT, (i, js E) (8.5.1d)

Step 2: Next we calculate the Green’s function (see Eq.(8.2.1))

G*=[EI-Hc-3*]", G*=[G"] (8.5.2a)

To perform this step we need to use the matrix representation for the
Hamiltonian operator Hc (see Eq.(8.2.5)) that was developed in Chapter 3
using the method of finite differences. The result is repeated here for con-
venience (see Eqgs.(3.5.9a,b)):
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[EI-Hc),=E-Um)-zt ifi=j

= f; if i and j are nearest neighbors (8.5.2b)
=0 otherwise

where (1) z is the number of nearest neighbors (z = 2 for a linear chain
and z = 4 for a square lattice), (2) r; is the position vector for lattice site
i. The nearest neighbor coupling is given by

iy = texp[ieA.(x - r; Jh] (8.5.2¢)

The vector potential A is evaluated at a point halfway between sites i and
Js that is, at (l'i + r,-)/2.

Step 3 is to calculate the correlation functions (see Eqs.(8.3.1))
G"=G*"G* and G*=GRZI™G* 8.5.3)

Note that the the scattering functions are obtained by summing those due
to the interactions and those due to the leads.

zi;uEz‘;], = - z:,“'+22:“']
P P

The component due to the interactions gets updated from one iteration to
the next.

" -

Step 4 is to calculate the self-energy and scattering functions arising from
the interactions, using the appropriate expressions from Eqs.(8.4.6)—
(8.4.8). The steps are summarized in Fig. 8.5.2. Once we complete step 4,
we check to see if the self-energy and scattering functions due to the
interactions have changed since the last iteration. If so we repeat steps 2,
3 and 4 till these functions converge. Note that at each iteration we are
required to invert (N x N) matrices for each energy channel. The number
of energy channels depends on the temperature, the bias and also the cor-
relation energy (that is, the energy range over which the Green’s function
can be assumed to be nearly constant).

Step 5: After we have obtained a converged solution for the correlation
function we can use it to calculate any quantity of interest such as the
terminal current. The current at lead p is given by

I, = 2 (for spin) xfip(E)dE
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Calculate self-energy and
1. scattering functions due to leads

Eq.(8.5.1)

vy

2. Calculate G}
Eq.(8.5.2)

!

3, Calculate correlation functions
Eq.(8.5.3)

v

Calculate self-energy and
4. scattering functions due to interactions

see Eqs.(8.4.6)«(8.4.8)

Converged ?

5. Calculate terminal currents

Eq.(8.5.4)

Fig. 8.5.2. Block diagram illustrating the iterative procedure to be followed in
applying the NEGF formalism. No iteration is necessary if we neglect interactions.
We can go directly from step 3 to step 5.

where ip= %Tr[E}f‘GP -33G" ] %Tr[E‘,f‘A -T,G"] (8.5.4)

The two spin contributions we assume to be degenerate, as we have done
throughout this book. Note, however, that the factor of 2 is not included in
i(E) as we did earlier (cf. Eq.(2.5.7))

A proper derivation of Eq.(8.5.4) requires an extended discussion which
we will take up in the next section. But it is easy to see that the result is
quite reasonable using a simple heuristic argument. Let us assume we are
using a representation |a) in which the correlation functions are diagonal
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(the trace of course is the same in any representation). In this representa-
tion we can write
ipm= z[z‘;(a,a)GP(a,a) - 23 (@,@)G" (@, a)]
a

This is quite reasonable if we note that GP(a,a) (or G"(a,a)) represent
the probability that state |a) is empty (or occupied) while Z}(a,a) (or
27" (a,a)) represent the rate at which electrons are scattered from lead p
into (or out of) state |a) if empty (or occupied).

8.6 Current flow and energy exchange
In the last section we have seen how we can calculate the correlation
function G*(r,r';E). Once we know the correlation function, we can calcu-
late all other quantities of interest. For example we have already seen
that the electron density is given by (see Eq.(8.1.3))

2an(r;E) = G*(r,5;E), n(r)= 2fn(r,E)dE (8.6.1)

In this section we will show how the correlation function can be used to
calculate the current density, the terminal current, the energy current and
the energy exchanged with the reservoir.

Eq.(8.6.1) follows quite simply if we write the electron density in terms
of the wavefunction as n(r;E) = ¥(r)W¥ *(r) and replace

Y(r)¥*({) with G"(r,r;E)2n

This is the basic approach we will use to obtain expressions for the cur-
rent density etc. in terms of the correlation function. We will first express
the quantity of interest in terms of the one-particle wavefunction and then
replace W(r)W*(r’) with G"(r,r;E)2x. For a more rigorous discussion
we refer the reader to [8.7].

Current density
The current density is given by (see Eq.(2.6.6))

3 == (¥(p- cA)¥T + ¥ [(p- cA)¥])

which can be written in the form
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) == [0~ )T * @) o - —AD[EO* @)y

where p= -itV and p'=-iaV', where the gradient operators V and V'
operate on r and r' respectively. Finally we replace W(r)W *(r) with
G"(r,r; EY2n as before to obtain

27J(5E) = | -1 (V - V)G . E) - - A(H) G (1, 5E)
2m m far
J(r) = 2 (for spin) x f J(r,E)YE (8.6.2)

Once we have solved for G", we can calculate the current density
J(r;E) throughout the conductor using Eq.(8.6.2). The terminal current per
unit energy can then be obtained by integrating J(r;E) over the cross-
section of the corresponding contact:

i,(E) -fJ(r;E).dS,,

where S, is the surface separating the conductor from the lead p.
However, if we are not interested in the detailed current flow pattern then
the terminal current can be obtained directly without calculating the cur-
rent density, as we will now show.

Current operator

To obtain the terminal currents directly, we need to identify a quantity
that will tell us the rate at which electrons are lost from the system into
the leads or due to various scattering processes. The divergence of the
current density: V.J(r;E) represents such a quantity, since it tells us the
rate at which particles are lost from the surrounding volume. As we have
discussed earlier the divergence of the current can be written in terms of
the wavefunction as (see Eq.(8.2.7))

inV.J = ([Hc¥]* ¥ - ¥ *[HcP))e
We rewrite this in the form
ihV.J(r; E) = €[ He(r) - Ho(e)| ¥ ¥ * (), __

and replace W(r)¥ *(r') with G"(r,r ;EY2r as before to obtain
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27V.J(5:E) =~ He(r)- HE@ )]G (),

It is convenient to define a current operator

Ip(E) = %”[HCG“ - G"Hc) (8.6.3)

whose diagonal elements are equal to the divergence of the current den-
sity:
Iop(r,1;E) =V J(r;E) 8.6.4)

Making use of Eqgs.(8.6.3), (8.5.3) and (8.5.2) it is straightforward to show
that (see Exercise E.8.2 at the end of this chapter)

In(E)= %[G“}:“‘ ~E"GA - 26" +G"2A) (8.6.5)

Terminal current

The trace of the current operator represents the net outflow per unit
energy across an imaginary surface S enclosing the conductor (see Fig.
8.6.1):

Tr[lo]= flq,(r,r;E)dr - fV.J(r;E)dr

CONDUCTOR

Surface, §

RESERVOIR

Fig. 8.6.1. Interactions can be viewed as processes involving exchange of particles

with a reservoir. Particles enter the reservoir with an energy E and are returned with a

different energy E'. There is no net exchange of particles though there is a net
exchange of energy.
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Using Eq.(8.6.5) we can write
Te[ 1] = %Tr[Z‘“(GR -G*)-(E*-24)6"]
Making use of Eqs.(8.2.3) and (8.2.8), we obtain

Tr[Ie )= STr[£"A-T 6"
'e‘ . (8.6.6)
- ZTr[z"*c;l’ -z™G"]

This last expression is easily understood following the heuristic argument
we used earlier to justify Eq.(8.5.4). = is the rate of inscattering into a
state if it is empty, while G? is the density of empty states, so that the
first term =GP” represents the actual rate of inscattering. Similarly the
second term =°"G" represents the rate of outscattering,

We know that the inscattering and outscattering functions are given by
the sum of individual contributions from the leads and from the interac-
tions (see Eq.(8.4.1)):

zh - [2%,': +y zi;], D [z:,"' * 22;“‘]
P P

This suggests that we split up the net outflow given by Eq.(8.6.6) into
individual components:

Tr[Iop(E)] = ip(E) + z i,(E) (8.6.7)
p
where ir(E) = %Tr[Ef,',‘G" —2‘?,,“'G"]
and ip(E) = %Tr[zi',‘ 6P -2 6]

The term i,(E) gives us the influx from the lead p, which can be inte-
grated over energy to give the corresponding terminal current as stated
earlier in Eq.(8.5.4). Interactions can be viewed as processes involving ex-
change of particles with a conceptual reservoir. From this point of view,
the term i, (E) represents the flow of particles into this conceptual reser-
voir (see Fig. 8.6.1).
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Energy exchange

Interactions only reshuffle electrons around in energy. There is no net loss
or gain of electrons in the process. Particles enter the reservoir with an
energy E and are returned with a different energy E'. If i (E) is positive at
some energy it has to be negative at some other energy such that

fin(E)E =0

This means that regardless of the detailed nature of the interactions, the
following relation must be satisfied:

fTr[z%,'; G*|dE = fTr[z:,"'G"]dE (8.6.8)

Note, however, that i,(E) is not zero at all energies unless the interac-
tions are purely non-dissipative. The power dissipated can be calculated
by integrating the outflux of energy into the reservoir over all energies:

Power dissipated = -2 (for spin) x 1 f Ei,(E)dE
e

Thus the NEGF formalism can be used to calculate the power dissipated
inside the conductor (see R. K. Lake and S. Datta (1992), Phys. Rev. B,
46, 4757). This need not equal the applied voltage times the current,
since part of the energy could be dissipated inside the contacts. Indeed if
inelastic processes were completely absent inside the conductor, all the
dissipation would occur in the contacts.

8.7 Relation to the Landauer-Biittiker formalism

Superficially, the NEGF formalism looks very different from the
Landauer—Biittiker formalism. The NEGF formalism focuses on the inter-
nal state of the conductor. Even the scattering functions due to a lead p
(Z5(r,r) and =$"(r,r)) are defined at points (r,r') located inside the
conductor. By contrast, in the Landauer approach the central quantity is
the transmission function from one contact to another. The internal state
of the conductor usually never appears in the discussion. However, we
have seen in Section 3.5 that the transmission function can be expressed
in terms of internal quantities (see Eq.(3.5.20)). We will show in this sec-
tion that we obtain precisely this result from the NEGF formalism as well
when we consider coherent transport (without any electron—phonon or
electron—electron interactions). We will also show the approximations
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inherent in the phenomenological model used to incorporate phase-
breaking into the Landauer—Biittiker formalism (see discussion in Section
2.6).

Combining Eqs.(8.5.3) and (8.5.4) and making use of Eq.(8.2.8) we can
write

ip= ETr[Zi;GREW' G* -2 G 2" G*]
e in R A Ryin ~A
- ZTr[z,, G*TG*-T,G*2"G*]
Writing the scattering functions in terms of its components (Eq.(8.4.1))
z‘"-[z%,':+22§; r,,,+2r,,
q9 q9

we can separate out the total current into its coherent and non-coherent
components as follows:

, T=

ip '[ip] 1 +[ip] " 8.7.1)
ip = £$ T[22 GrT, G* - T, GREGA 8.72)
coherent h
q
[ip]non-coherent = %Tr[zg GR rW GA - rP GR zg GA] (873)

It is interesting to note that if the scattering functions Zj,Zo" are zero
then the non-coherent component of the current is zero. This means that
even when we take the Hartree—Fock interaction into account (see
Eqs.(8.4.2)(8.4.4)) transport remains coherent. It affects the dynamical
properties of the electrons through the self-energy function =5 but since
there is no inscattering or outscattering the current does not have any non-
coherent component.

Coherent component

Making use of Eq.(8.5.1c) we can rewrite the coherent component as
. e
[lp]ooherent - Zz Tr[rp GR rq GA](fP - ﬁi)
q9

so that the terminal current can be expressed in the familiar form (see
Eq.(2.5.7)):
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(1], s = 2 (for spin) x fi,, (EYE

= %f;fm[fp'fq]dE

where T, = Tt[T, G*T, G*| (8.7.4)

in agreement with the result obtained earlier (see Eq.(3.5.20)).

Non-coherent component

It will be recalled that in Section 2.6 we described a phenomenological
model using a floating voltage probe to simulate non-coherent processes.
It is apparent from the above description that the effect of interactions is
just like that of an extra lead attached to the conductor. The current i(E)
at this fictitious lead integrated over energy is equal to zero just like a
floating probe (see Eq.(8.6.8)). If we could express the inscattering and
outscattering functions in the form

[28]= A[r,] and [=3*]=- £)[L0] (8.7.5)

then we could interpret f,(E) as the distribution function at a fictitious
voltage probe and express the non-coherent current in the form

[Ip]non-ooherent = %fﬁw[fp - fW]dE

where T, = T[T, G*T, G*] (8.7.6)

One still runs into difficulties in calculating the distribution function
fo (E), unless vertical flow is neglected as we discussed in Section 2.6.

But it should be noted that in general it may not even be accurate to
describe interactions in terms of a simple probe distribution function
fo(E). This is because we cannot always express the inscattering and
outscattering functions in the form shown in Eq.(8.7.5). We need a distri-
bution function [F,) that is a matrix and not just a number ([/]: identity
matrix):

[z2]=[R][re] and [z3*]=[1-F]T] (8.7.7)

Unless [F,] is diagonal the current cannot be expressed in the form shown
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in Eq.(8.7.6). It is still possible to express the current in the linear re-
sponse regime in terms of effective transmission functions but the result-
ing expressions for the transmission are far more complicated (see S.
Datta (1992), Phys. Rev. B, 46, 9493).

8.8 Relation to the Boltzmann formalism

A transport theory is based on some dynamical equation like Newton’s
law or the Schrédinger equation. However, dynamics alone is not enough,
whether it is classical or quantum. This is because dynamical equations
are reversible, while transport processes are dissipative and irreversible.
Transport theories usually introduce this irreversibility by assuming that
the system of interest is in contact with a vast ‘reservoir’ that is always in
thermal equilibrium and continually tries to restore the system to equilib-
rium through random interactions. This is particularly clear in the
Landauer approach where the system and the reservoir are spatially dis-
tinct entities. The system is the mesoscopic conductor which is assumed
to be non-dissipative and as such can be described by a dynamical equa-
tion. The reservoirs are the contacts which accept the non-equilibrium dis-
tribution of electrons emerging from the conductor and reinject a fully
thermalized distribution back into the conductor. This separation into a
dissipative and a non-dissipative segment is an idealization, though it
does seem to capture much of the physics of mesoscopic transport.

In general dynamics and dissipation are completely intertwined and for
a quantitative description we need a transport equation like the
Boltzmann equation which combines Newton’s law with a probabilistic
description of random scattering forces. We could use the Boltzmann
equation to describe transport in mesoscopic systems including dissipa-
tive processes inside the conductor, as long as quantum interference
effects do not play a significant role. This is the approach followed by de-
vice engineers for the simulation of small electronic devices having
dimensions comparable to the mean free path of the electrons (see, for
example, M. S. Lundstrom (1990), Fundamentals of Carrier Transport,
Modular Series on Solid-state Devices, vol. X, eds. R. F. Pierret and G.
W. Neudeck, (New York, Addison-Wesley)). The NEGF formalism pro-
vides a general framework for describing quantum transport, much the
same way that the Boltzmann formalism provides a general framework for
semiclassical transport. Both formalisms combine a dynamical equation
with a probabilistic description of scattering processes:
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Boltzmann => Semiclassical dynamics + Random scattering
NEGF = Quantum dynamics + Random scattering

In this section we will try to identify the corresponding concepts in the
two formalisms. For this comparison we will ignore the leads and assume
that we are discussing current flow in the interior of a large conductor.

Basic equations

The central quantity in semiclassical transport theory is the distribution
function f{r,k) which is described by the Boltzmann equation. For steady-
state transport

V.Vf +(eE/R).Vaf + S (r,K) f(r, k) = S”(r, k) (1 - £(r,K))

where §° and S are the outscattering and the inscattering functions
respectively. We rewrite this equation in the form (suppressing the argu-
ments r, k for clarity)

v.Vf +(eE/R).Vxf + (8™ +S") f = S* (8.8.1)
and convert it into an integral equation:

f(r,k)= ﬂ'F(r,k;r,,kl)s*"‘ (1, ky)dndk; (8.8.2a)

where F is the Green’s function or the ‘impulse response’ of the
Boltzmann equation:

V.VF + (eE/h).VyF + (S + S°)F = 8(r -n)d(k-k;)  (8.8.2b)

Eq.(8.8.2a) looks formally somewhat similar to the central equation in the
NEGF formalism (G" = G* £ G*) which can be written as

G'(r,r;E) = ffF(r, r;n,r;E) 28 (n, 0 ; E)dndr (8.8.3)
where we have defined
F(r,¥;n,r; E) m GX(r,1; E)G*(r, 5 E) = G* (r,1i; E)GR (v, ¥ E) *

G® being the Green’s function (or impulse response) of the Schrodinger
equation including the self-energy functions:

[E—H-—o+%(2i“ +2°“')] GR(r,r) = 8(r - ¥)
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Analogous concepts

Comparing Eqs.(8.8.2) and (8.8.3) it is easy to see the similarity in the
formal structure of the two formalisms and pick out the concepts that are
analogous:

NEGF Boltzmann
G*(r,r;E) f(r.k)
G*(r,r';E) 1- f(r,k)
I (r,r;E) S (r,K)
2%(r,r;E) §°(r, k)

In the NEGF formalism the ‘impulse response’ F(r,r';ri, ri; E) is obtained
from a Schrodinger-like equation including an imaginary potential
(i(Z"® +=°")2) that leads to the disappearance of particles. Of course,
the particles do not really disappear. They are reinjected through the
source term =" in the equation G"=G"Z"G*. Thus there are two
aspects to the problem described by two different equations which have to
be solved simultaneously. A Schrodinger-like equation describes the
dynamics of quasi-particles as they propagate and ‘decay’ via scattering
processes while a transport equation ensures that the particles that
‘decay’ are reinjected. In the usual form of the Boltzmann equation these
two aspects of the problem are intertwined in the same equation,
Eq.(8.8.1). But it is possible to separate out the two aspects as we have
done in Eq.(8.8.2) and thereby exhibit the similarity with the NEGF
formalism.

The self-energy functions =" and = in the NEGF formalism play roles
analogous to the inscattering and outscattering functions (S and $°*) in
the Boltzmann formalism. In both formalisms irreversibility is introduced
through the assumption that the scattering functions can be evaluated
assuming that the reservoir is always in thermal equilibrium with
no memory of past interactions.

Earlier in Section 8.2 we pointed out that the correct phase-breaking
rate is not just equal to the outscattering function, but is obtained by
adding the inscattering and outscattering functions I' = =™ + I (see
Eq.(8.2.8)). Egs.(8.8.2a,b) have been written in a form that corresponds to
this viewpoint. But instead of Eq.(8.8.2a) we could just as well have
written

f@.k) =ffF' (r, k1, k) S (1, ki ) (1 - (1, ki ))dndky
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with F' defined by a slightly different equation (cf.Eq.(8.8.2b))
V.VF' +(eE/R).ViF'+ S™F' = 8(r -n)d(k - k;)

A transition that is blocked due to the exclusion principle breaks the
phase and should be viewed as a ‘self-scattering event’ which scatters an
electron back into the same state with its phase randomized. Such self-
scattering, however, makes no difference to the Boltzmann formalism
which does not keep track of the phase anyway. We can write the
Boltzmann equation in a form that includes the self-scattering (as we
have done in Eqs.(8.8.2a,b)) and makes it look more like the NEGF, but
this is purely an algebraic manipulation.

Distribution function
The correlation function G" is analogous to the distribution function f used
in the Boltzmann theory. In the Boltzmann formalism all one-particle
quantities of interest like the electron density (n), the particle current
density (Jp) or the energy density (U) can be calculated once we know
the distribution function:

n(r) = [ fekydk, J(r)= (VRf(rK)dk, U(r) = [EK)f(r,K)dk (8.8.4)

The same is true of the correlation function in the NEGF formalism. All
one-particle quantities of interest can be obtained once the correlation
function is known (see Section 8.6):

n(r) -f%[G“(r,r';E)L_rdE

J(r) = f% [-iz—e'%(v —V')G (r,rE)- fn—zA(r)G“(r, r';E)L-rdE

U@) - f %E[G“(r,r';E)L_rdE (8.8.5)

Wigner function

It is possible to transform variables to define a function G¥(R,K;E) re-
lated to the correlation function G*(r,r';E) such that Egs.(8.8.5) look just
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like Eqs.(8.8.4). The transformation proceeds as follows. We first trans-
form (r,r') to center of mass and relative coordinates (R,p):

=(r+r)2and p=(r-r

to write the correlation function in the form G*(R,p;E). Next we Fourier
transform the relative coordinate p to obtain the Wigner function:

G"(R K E) ~ [exp[-ikp |G"(R, p; E)dp (8.8.6)

The appeal of the Wigner function arises from the fact that if we
rewrite the expressions for the electron density, current density etc. in
terms of G¥(R,K) they take on a form just like the semiclassical expres-
sions in Eqs.(8.8.4):

n(R) ~ ﬂ'Gw(R,k;E)dEdk, J(R) ~ ffv(k)GW(R, k; E)dEdk

U(R) ~ [[EG™ (R k EXEdK (8.8.7)

where v(K) = (%k - eA)/m. Starting from Eq.(8.8.5) we can obtain the ex-
pression for the electron density (n) as follows:

n®) ~ [[6*@.r:E)], 6 ~ [[6"(R.p:E)), E
- f[ [exp[+ikp]G¥ R, k;E)dk]p_odE - [[/6” Rk E)dEdk

The expression for the energy density (U) can be obtained along similar
lines. The expression for the current density is also obtained similarly,
once we note that the operator (V - V") in real space corresponds to mul-
tiplying by ‘ik’ in the transformed space:

®- [ [—f’—'v C'R.p; E)——A(r)G"(R,p;E)]

-[ U exp(lk,,)[zﬂsgw(& kE)- 2 ARG R, k;E)]dk} dE

ff[ehk e A]GW(R,k,E)dEdk

One difference between the semiclassical distribution function f{r,k) and
the Wigner function G¥(R,k;E) is that in the semiclassical picture the
energy E is related to the magnitude of the wavevector Kk (and thus does
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not appear explicitly) while in the quantum mechanical picture there is
no relationship in general since plane waves are not necessarily energy
eigenstates.

There is another very important difference between the Wigner func-
tion and semiclassical distribution functions. The semiclassical distribu-
tion function f{r,k) has a simple physical meaning: it is the number of
particles at r with momentum #k. But we cannot in general interpret the
Wigner function in the same way because it is not positive definite. To
clarify this point, let us look at a simple example. Suppose we have elec-
trons with a single energy E which are reflected from a barrier so that the
wavefunction is composed of incident and reflected waves as follows:

W(2) = exp(iBz) + r exp(-ifiz)
where r is the reflection coefficient and B8 =+2mE/h. The correlation
function is given by
G"(2,2) = P(2)¥ *(2)
- exp[iﬂ(z - z')] +rr* exp[—iﬂ(z - z')]
+r* exp[iﬂ(z + z')] +r exp[— ip(z+ z')]

Transforming to center of mass and relative coordinates (R = (z + z')/2
and p = (z - 2)

G"(R,p)= exp[iﬂp] +rr* exp[—iﬂp] +r* exp[iZﬂR] +r exp[—iZﬂR]
Hence the Wigner function is given by
G¥(R,k = 0) = r*exp[i2BR]+ rexp[-i2R]
GY(Rk=+B)=1
GYRk=-B)=rr*

The components of the Wigner function at k = +f and at k = - make
perfect sense. The number of particles with k = +8 is 1 while the number
with k = -8 is equal to the reflection probability r r*.

But what is the meaning of the component at k = 0? It oscillates in
space between +2|r| and defies any simple classical interpretation since
it takes on negative values as well. The basic reason for this difficulty is
that by trying to define R and k simultaneously with arbitrary precision we
have violated the uncertainty relation. The price we have to pay is the
appearance of negative probabilities. This is a generic problem that arises
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whenever we try to describe quantum correlations in terms of classical
concepts. One way to get around this is to define a new function (known
as the Husimi function) obtained by averaging the Wigner function over a
spatial region greater than a wavelength. The unphysical component
GY(R,k = 0) then vanishes. By giving up on spatial precision we satisfy
the uncertainty principle.

The formal similarity between Eqs.(8.8.4) and (8.8.7) is rather attractive
and several authors have used the Wigner function or the Husimi function
to describe quantum transport. Other types of distribution functions have
also been described in the literature which are suitable for specific
classes of problems (see for example the ‘quasi-classical approximation’
discussed in Section III of Ref.[8.6]).

8.9 Strongly interacting systems

Our discussion in this chapter has been based on a simple one-particle
picture, assuming that an individual particle sees an effective potential
(the self-energy) due to its interaction with the surroundings. As meso-
scopic conductors get smaller and begin to resemble large molecules, this
concept of an effective potential is breaking down as we saw in Section
6.3 in our discussion of single-electron tunneling. This is known as the
regime of strongly correlated transport and it is gaining increasing atten-
tion. Note that the word ‘correlation’ here is used to denote something
very different from the phase correlations of the one-particle wavefunction
that we have been talking about so far.

The NEGF formalism is usually derived from a many-body approach
[8.1-8.8] using perturbation theory to treat the interactions. This is similar
in spirit to what we did in Section 5.5 to derive a self-energy function for
impurity scattering (see Fig. 5.5.4). Of course, the details are much more
complicated since it involves many-body perturbation theory and is be-
yond the scope of this book. The point is that this approach provides a
systematic method for evaluating the self-energy and scattering functions
taking the interactions into account up to any desired order. As such it
might seem that we should be able to use this approach even for very
strong electron—phonon or electron—electron interactions. We just need to
go to higher orders. But this is not correct. For sufficiently strong interac-
tions the perturbation expansion breaks down. This is exactly what would
happen even with the single-particle perturbation theory described in
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Section 5.5, if the impurity potential were strong enough to form localized
atomic-like states.

Is the NEGF formalism applicable to the strongly correlated transport
regime? The answer is that we cannot use

G*=[EI1-H-2*]" (8.5.2)

or G"=G*z"G* (8.5.3)

since we cannot describe the interactions by self-energy and scattering
functions like =§ or =¥ =2 But if we could use some other non-
perturbative technique to calculate the Green’s functions and the correl-
ation functions, then the current can be calculated from the relation

1= % [Ti[z8a-T,G e (8.5.4)

This may not be obvious since we made use of Egs.(8.5.2) and (8.5.3) in
deriving Eq.(8.5.4). However, this relation has been derived without mak-
ing use of Egs.(8.5.2) and (8.5.3) thus proving its applicability to strongly
interacting systems even when Eqgs.(8.5.2) and (8.5.3) may not be appli-
cable (see Y. Meir and N. S. Wingreen (1992), Phys. Rev. Lett. 68, 2512).
An interesting result pointed out by Meir and Wingreen is that for a
two-terminal conductor with ‘proportionate’ coupling to the two leads,
that is, with I7 = Al where A is a constant, we can write the current as

I=lh=-I= %fTr[yA][ﬁ - fz]dE where y = ﬁl‘l

This result is obtained from Eq.(8.5.4) by noting that since I; must be
equal to -1, we can write the terminal current as (I; - AlL)/(1 + A). Thus
for this limited class of conductors, the current is given by the same
expression as in the non-interacting case (cf. Eq.(2.5.1)), with the trans-
mission function given by Tr[yA]. Of course, for strongly interacting sys-
tems we still need suitable non-perturbative techniques for evaluating the
spectral function A (see for example, S. Hershfield et al. (1991), Phys.
Rev. Lett., 67, 3720, A. L. Yeyati et al. (1993), Phys. Rev. Lett., 71, 2991
and P. A. Lee (1993), Physica B, 189, 1)

Another special case where the current can be expressed in this form is
when the conductor is strongly coupled to one of the leads, say lead ¢
(see Fig. 3.7.4). We can then assume that the conductor is essentially in
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equilibrium with lead g so that G" =~ f,A (see Eq.(8.3.3)). Since
=5 = f,I, (see Eq.(8.5.1c)), we can write

Ip~22 (Te[T,4][f, - £,)dE

Transport in strongly correlated systems is a rapidly evolving field of
research and we will not discuss it further in this book. It is interesting to
note that similar issues arise even for classical transport in the presence
of strong correlations. The Boltzmann equation which is widely used
to describe classical transport in dilute systems is inadequate once
the potential energy due to interparticle interactions exceeds the kinetic
energy. One then has to worry about higher order distribution functions
(two-particle, three-particle etc.) described by equations higher up in the
BBGKY hierarchy (see for example S. Ichimaru (1973), Basic Principles
of Plasma Physics, Frontiers in Physics, Benjamin/Cummings). Similarly
in the NEGF formalism one needs higher order Green’s functions to
describe strongly correlated systems.

8.10 An example: resonant tunneling with phonon scattering

We end this chapter with a simple example (adapted from R. Lake et al.
(1992), Phys. Rev. B, 47, 6427) that can be worked out analytically by
making suitable approximations. In general, to apply this formalism to
actual conductors, we need to resort to numerical calculations. But this
simple example serves to illustrate how the formalism is applied to con-
crete problems. The problem we will address is the effect of phonon scat-
tering on the current flow through a resonant tunneling (RT) diode. The
basic physics has already been discussed in Section 6.2. Here we will just
outline the key results before we proceed to derive them.

First we consider an RT diode biased such that the incident electrons
from the left lead can tunnel through the resonant level in the well (see
Fig. 8.10.1a). This is the condition for peak current. We have seen in
Chapter 6 that the current (per transverse mode) is given by

2e I

) At 8.10.1a
PR n+n ( )

where I'y and ', are the energy broadening of the resonant level due to
the coupling to leads 1 and 2 respectively. As we discussed in Chapter 6
this result is unaffected by phase-breaking processes. The current is the
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Fig. 8.10.1. A one-dimensional resonant tunneling diode: (a) potential energy diagram

at a bias corresponding to main peak; (b) potential energy diagram at a bias

corresponding to the phonon peak; (c) a discrete model with one lattice point each in

the two barriers and in the well; (d) a simpler approximate model which accounts for
the barriers through a reduced coupling between the leads and the well.

same for both coherent and sequential tunneling. We will derive this re-
sult using the NEGF formalism.

The second question we address involves ‘vertical’ flow of carriers from
one energy to another. We consider a resonant tunneling diode biased
such that the resonant energy level lies below the energy of the incident
electrons (see Fig. 8.10.1b). This condition corresponds to the valley cur-
rent where very little current flows in the absence of scattering. Scattering
processes, however, induce vertical transitions and can lead to a ‘phonon
peak’ in the valley current when the resonant energy level lies one opti-
cal phonon energy hwo below the energy of the incident electrons. We
will derive the following expression for the current per transverse mode at
the phonon peak:

2 gI'll'z

(8.10.1b)
h gI‘l +I;

IPP -
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where g is a dimensionless constant (<<1) describing the strength of the
electron—phonon coupling.

Comparing Eqs.(8.10.1a) and (8.10.1b) for the main peak and the
phonon peak we note that the only difference is that I'y has been replaced
by gI';. This result can be understood intuitively. At the main peak an
electron can tunnel directly into the resonant level. But at the phonon
peak, an electron has to tunnel in from the left and emit a phonon in order
to get into the resonant level. Consequently the effective tunneling rate is
reduced by a factor g.

We will now derive Egs.(8.10.1a,b) from the NEGF formalism, follow-
ing the steps summarized in Fig. 8.5.2. Note that the basic difference be-
tween the main peak and the phonon peak (that is, between Eq.(8.10.1a)
and (8.10.1b)) arises in step 4 where we evaluate the scattering functions
due to the interaction with phonons.

Discrete lattice model

If we use one lattice point in each of the two barriers and one point in the
well (see Fig. 8.10.1c) then we would have to work with (3 x 3) matrices.
We can simplify the algebra with an approximation that captures much of
the physics if the tunneling probability through the barriers is very small.
In this approximation we get rid of the lattice points inside the barriers
and reduce the coupling of the device to the leads to account for the bar-
riers. We then have only one point inside the conductor so that we have
to work with (1 x 1) matrices.
Let us now proceed with the steps shown in Fig. 8.5.2.

Step 1 Self-energy and scattering functions due to leads, Eq.(8.5.1)
=X(C,C) = -te**a

where C denotes the single point inside the conductor and o, is a number
much less than one representing the reduced coupling of the well to lead
p due to the barriers (p = 1,2). The entire structure including the leads is
assumed to be single-moded. Since we are dealing with (1 x 1) matrices
we will drop the argument (C,C) from here on:

Rao,- -;-r,, (8.10.2a)

hv
o,wta’cos(k,a) and T,ma’—L
a
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We assume that in our energy range of interest fi(E) =1 and f£(E) = 0.

Hence
SP =y, ZSM=0

. (8.10.2b)
353=0, ZMaD;
Step 2 Green’s function, Eq.(8.5.2)
G*=[E-H-Z*]'
-1 (8.10.3)

- (€-EN+3@eTiem) =5

where e-(E—E})+%(I'¢+I‘1+I'2)
E! = E, - aitcos(kia) - ait cos(k,a) ~ E,

I’y represents the sum of the inscattering and outscattering functions aris-
ing from the interaction with the phonons:

[p=204+ 3"

Step 3 Correlation functions, Eq.(8.5.3)

G*==*|G*[ - z*lv }n
€
- (8.10.4)
GP = I GR |2 - zw +2r2
||
Let us skip step 4 for the moment. We will return to it shortly.
Step 5 Terminal currents, Eq.(8.5.4):
out
n=2 [t -2 [[BEE Tl
| e
ne-2[rperap--2 | (RG] g5
h h o | |£|

I.,,_—“z‘“GP z5 'G“]dE__ [Z‘T:Fz—zzz“‘l‘l}dE
h o |£|
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where we have made use of Eq.(8.10.4). If we are interested in coherent
transport without interactions then we can stop right here. Since =& = 0
and =5 =0, we obtain

Il-s—Iz-2 Ill—}—dE and I, =0

hJ e

But the real value of the NEGF formalism is that it allows us to include
interactions. To do this, however, we need to perform step 4 which re-
quires us to evaluate =5 and =3 in terms of the correlation functions G*
and G* inside the well. This step has to be handled differently for the

main peak and for the phonon peak. We will take these up one by one.

Step 4 Main peak

Next we need to make use of the relation between the correlation func-
tions and the scattering functions (see Egs.(8.4.5a,b)):

25 (E) = [ D(hw)G" (E - hw)d(hw)

23'(E) = [ D(ha) G* (E + hw)d(hw)

Since both G" and GP are sharply peaked around the resonance energy we
can assume that the function D is independent of energy over this small
energy range of interest. We then obtain using Eq.(8.10.4)

. 2“‘ +F1
=8 o DG™(E"E' = 27D ——2"—"1 8.10.6
¢ f (E") T, +T+5 ( a)
2°“‘ + I';
and S w2gD 2 T2 8.10.6b
¢ T,+i+1 ( )

where we have made use of the integral

g _ 1 SAE~—2F _ (8.10.7)
€] (E_E)2+(r¢+r1+r2) T,+0+0,
' 2

Adding Eqgs.(8.10.6a) and (8.10.6b) we obtain
o =2nD (8.10.8a)

Sin 2%,';+r1_£ - 2%,':_ nL

AlSO, out | gout T
2p4 S+ I, I, i+

(8.10.8b)
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Step 4 Phonon peak

The basic difference between the main peak and the phonon peak is that
at the main peak transport takes place at one energy while at the phonon
peak transport takes place around two distinct energies which we will de-
note by E, and E,, where Ey, ~E, and E,=~E,+hwo. Assuming that
hwo >> kT we can neglect phonon absorption so that there is no inscat-
tering at the upper energy E. and no outscattering at the lower energy Ey:

2¢(E)=0, Z3"(Ev)=0

Next we need to evaluate the outscattering function at the upper energy
E, and the inscattering function at the lower energy Ey. Assuming a single
frequency phonon spectrum we can write

D(hw) ~ Dod(hw + hawo)
so that ZPM(Ey) ~ DoyGP(E, - hao)
and Zf,f‘(E.,) ~ DoGn(Eb + hO)o)

Thus we need the electron correlation function at the upper energy and
the hole correlation function at the lower energy. From Eq.(8.10.4) we
have

GME)~—1— and G(E) b
a Y e—— b =
(A, )’ gy +[B1LE ’
) 2

. Dy

Dcﬁnlng gw= W
. in D() a a
we can write 2,,, (Eb) - er - gI‘l (8.10.9)
b
and Z3"(E)=Dy I
(Ea—E. —hop)* + E?_ﬂ
2

We have added the superscripts ‘a’ and ‘b’ to I'; and I'; to denote the en-
ergies at which these are evaluated and made use of the fact that I*=0.
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Also, we have assumed that E, — E, ~ hw, is much larger than the scat-
tering functions.

Step 5 Main peak
From Eqs.(8.10.5) and (8.10.8b), we can write the current in lead 1

2
Il-ff

Making use of the integral in Eq.(8.10.7) we obtain

Ll LL, L
leF "Tef T

dE=Icoh+Is¢q

2e I‘1I‘2 2e 1‘11‘2

Tooh = — > -
hJ |e| A+ +T,
I 2e pIl, I
“p |£|2 I+
2e I‘1I‘2 I‘,,, I‘,,,
= Icoh

A L+0+T, L+0 L+D

The two terms can be identified as the coherent and the sequential com-
ponents of the current, in agreement with the results obtained in Chapter
6 using heuristic arguments (see Egs.(6.2.4) and (6.2.6)). The total current
is independent of the phase-breaking rate (T')
2e I‘1I‘2

IOOh+qu=7F1+I‘2

as stated earlier (Eq.(8.10.1a)). Using the expressions for the scattering
functions derived above (Eq.(8.10.8)), it is easy to see from Eq.(8.10.5)
that the current in lead 2 is simply the negative of the current in lead 1:
I =-I.

Note that from Eq.(8.10.5) the current due to scattering is zero at all
energies: I, = 0. This is basically the reason the simple heuristic argu-
ment in Section 6.2 works so well. There is no net ‘vertical flow’ of elec-
trons from one energy to another, in spite of the presence of interactions.
All the current flows at the same energy as sketched in Fig. 8.10.2a.

Next we will discuss the phonon peak where we will see that the se-
quential current flows ‘vertically’ from one energy to another as shown in
Fig. 8.10.2b.



8.10 Resonant tunneling with phonon scattering 337

@

®)

Fig. 8.10.2. Schematic representation of the coherent and sequential components of
the current at the (a) main peak and at the (b) phonon peak.

Step 5 Phonon peak

Now we can calculate the terminal currents from Eq.(8.10.5) using the in-
scattering and outscattering functions from Eq.(8.10.9). Making use of the
integral in Eq.(8.10.7) we obtain from Eq.(8.10.5)

- % [A(ENAE, = Lo + Lo (8.10.10)
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where Ieon=—AE

2¢ gIiT}
h gI‘f‘ + I"}

Iseq =

The first term is the coherent term (AE is the energy spread of the inci-
dent electrons) which is usually very small. The second term is the
sequential term which has the form stated earlier in Eq.(8.10.1b). There is
no current at lead 1 around the energy E,. Similarly for lead 2 we obtain

I; = —Alcoh, I; = _Iseq
while the current due to scattering is given by
I =-lwq, Ip=+leq

This illustrates what we have referred to as vertical flow. The sequential
current flows in at energy E. and out at energy E., leading to the current
flow pattern shown in Fig. 8.10.2b.

Summary

For a proper description of quantum dynamics we need to keep track of
phase-correlations. This requires a number of new concepts like the corre-
lation function (G<, G*), the scattering function (£<, £>), the Green’s
function (G®) and the self-energy (=X). These concepts are introduced in
Sections 8.1-8.2 and the basic equations are introduced in Sections 8.3—
8.4. The overall approach for applying the NEGF formalism to specific
problems is summarized in Section 8.5. Once we have calculated the cor-
relation function for a particular structure, all other quantities of interest
like the terminal current can be obtained as described in Section 8.6.
Next we discuss the relationship of this formalism to the Landauer—
Biittiker formalism (Section 8.7) and the Boltzmann formalism (Section
8.8). In Section 8.9 we discuss the difficulties of applying this formalism
to strongly interacting systems where the perturbation theoretic treatment
of interactions is not valid. We end in Section 8.10 with a simple illustra-
tive example which permits an analytical solution.

We have developed the basic concepts of the NEGF formalism using
elementary kinetic arguments without using the formalism of second
quantization. One aspect that we have not done justice to is the system-
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atic calculation of the self-energy functions for different types of interac-
tions. This requires many-body perturbation theory beyond the scope of
this book and we refer interested readers to Refs.[8.1]-[8.8]. However, the
structure of the NEGF formalism can be appreciated without going into
the details of how the self-energy functions are calculated, just as one
can appreciate the Boltzmann formalism without knowing how the scat-
tering functions are calculated,

Exercises

E.8.1 Show that the divergence of the probability current density (see
Eq.(2.6.6))

Ir)= ?en;([(p —eA)F]" ¥ + ¥* [(p-eA)¥))
can be written as

iRV.J(r) = ([Hc¥]" ¥ - ¥* [HcP))e

E.8.2 Making use of Egs.(8.5.2) and (8.5.3) show that
HcG" —G*Hc =GR E" —3SPGA_SRG "+ G 24

E.8.3. Show that the scattering functions given in Section 8.4

25 (r,r;E) =fD(r,l’;hw) G"(r,r;E - ho)d(hw) (8.4.52)

2 (r,;E) = f D(r, ¥; hw) G*(r,T'; E + hw)d(hw) (8.4.5b)
obey the relation
fTr[zi,?GP]dE - fTr[z:;,"'G"]dE (8.6.8)
required for current conservation. Note that D(r,r; hw) = D(r,r; hw).

E.8.4 Show that Eqs.(8.5.2) and (8.5.3) can be recast in terms of the time
ordered and anti-time ordered functions (see Eq.(8.1.5)) as

E-Hc-=T +Z® G' -iG"] (I O

+EZ™  E-Hc+ET|[-iG* -GT| [0 I



340 Non-equilibrium Green’s function formalism

This is the form commonly found in the literature. It can be written com-
pactly in the form

[(E - Ho)1 - 2][G]-[1]

where we have defined

GT -G =T _izh I 0
G |, == =1, I=
U= [_iGP _GT ] = [_izout _zT ] = [0 I]

This result is usually derived from a many-body approach using a pertur-
bation expansion for the interactions. This yields a systematic diagram-
matic method for evaluating the self-energy functions up to any desired
order in the interaction.

Further reading

A few standard references and review articles are listed below. The list is
far from exhaustive.

[8.1] Martin, P. C. and Schwinger, J. (1959). ‘Theory of many-particle
systems.I’, Phys. Rev. 115, 1342,

[8.2] Kadanoff, L. P. and Baym, G. (1962). Quantum Statistical Mechan-
ics, Frontiers in Physics Lecture Note Series, Benjamin/Cummings.

[8.3] Keldysh, L. V. (1965). ‘Diagram technique for non-equilibrium
processes’, Sov. Phys. JETP 20, 1018.

[8.4] Langreth, D. C. (1976). In Linear and Non-linear Electron
Transport in Solids, eds. J. T. Devreese and E. van Doren, NATO
Advanced Study Institute Series B, vol.17, p.3, Plenum, New York.

[8.5] Danielewicz, P. (1984). ‘Quantum theory of non-equilibrium pro-
cesses’, Ann. Phys. 152, 239.

[8.6] Rammer, J. and Smith, H. (1986). ‘Quantum field-theoretical
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[8.7] Mahan, G. D. (1987). ‘Quantum transport equation for electric and
magnetic fields’ Phys. Rep. 145, 251.

[8.8] Khan, F. S., Davies, J. H. and Wilkins, J. W. (1987). ‘Quantum
transport equations for high electric fields’ Phys. Rev. B, 36, 2578.

The above references largely focus on infinite homogeneous media. Many
authors have applied the NEGF formalism to problems involving finite
structures. Since we are not aware of any review articles covering this as-
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pect we cite a few papers below. Once again the list is far from exhaus-
tive.

Tunneling

[8.9] Caroli, C., Combescot, R.,, Nozieres, P. and Saint-James, D.
(1972). ‘A direct calculation of the tunneling current: IV. Electron—phonon
interaction effects’, J. Phys. C: Solid State Physics, 5, 21.

[8.10] Feuchtwang, T. E. (1976). ‘Tunneling theory without the transfer
Hamiltonian formalism’, Phys. Rev. B, 13, 517.

Superconductors

[8.11] Khlus, V. A. (1987). ‘Current and voltage fluctuations in micro-
junctions between normal metals and superconductors’, Sov. Phys. JETP,
66, 1243,

[8.12] Arnold, G. B. (1985). ‘Superconducting tunneling without the tun-
neling Hamiltonian’, J. Low Temp. Physics, 59, 143.

Relation to the Landauer—Biittiker formalism

[8.13] McLennan, M. J., Lee, Y. and Datta, S. (1991). ‘Voltage drop in
mesoscopic systems’, Phys. Rev. B, 43, 13 846.

[8.14] Pastawski, H. M. (1992). ‘Classical and quantum transport from
generalized Landauer—Biittiker equations. II. Time-dependent resonant
tunneling’, Phys. Rev. B, 46, 4053.

Resonant tunneling
[8.15] Anda, E. V. and Flores, F. (1991). ‘The role of inelastic scattering
in resonant tunneling heterostructures’ J. Phys. Cond. Matter, 2, 8023.
[8.16] Runge, E. and Ehrenreich, H. (1992). ‘Non-equilibrium transport in
alloy-based resonant tunneling systems’ Annals of Physics, 219, 55.
[8.17] Lake, R. and Datta, S. (1993). ‘Rate equations from the Keldysh
formalism applied to the phonon peak in resonant tunneling diodes’, Phys.
Rev. B, 47, 64217.

Transient transport

[8.18] Jauho, A. P., Wingreen, N. S. and Meir, Y. (1994). ‘Time-depen-
dent transport in interacting and non-interacting resonant-tunneling sys-
tems’, Phys. Rev. B, 50, 5528 and references therein.

More citations on quantum kinetic equations can be found in device-
oriented review articles such as
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[8.19] Ferry, D. K. and Grubin, H. L. ‘Modeling of quantum transport in
semiconductor devices’ Solid State Physics, Academic Press, New York
(to be published).

[8.20] Buot, F. (1994). ‘Mesoscopic physics and nanoelectronics:
Nanoscience and nanotechnology’ Physics Reports, 234, 73.



Concluding remarks

The 1980s were a very exciting time for mesoscopic physics character-
ized by a fruitful interplay between theory and experiment. What emerged
in the process is a conceptual framework for describing current flow on
length scales shorter than a mean free path., This conceptual framework is
what we have tried to convey in this book. The activity in this field has
expanded so much over the last few years that we have inevitably missed
many interesting topics, such as persistent currents in normal metal rings,
quantum chaos in microstructures, etc.

The development of the field is far from complete. So far both the theo-
retical and the experimental work has been almost entirely in the area of
steady-state transport and many basic concepts remain to be clarified in
the area of time-varying current flow as well as current fluctuations.
Another emerging direction seems to be the study of mesoscopic conduc-
tors involving superconducting components. Finally, as we study current
flow in smaller and smaller structures it seems clear that electron—
electron interactions will play an increasingly significant role. As a result
it will be necessary to go beyond the one-particle picture that is generally
used in mesoscopic physics. Single-electron tunneling is a good example
of this and it is likely that there will be many more developments involv-
ing current flow in strongly correlated systems.

It thus seems quite likely that the study of current flow in small
conductors will continue to produce exciting new physics in the coming
years. But will mesoscopic physics ever have any application? Device
engineers of today involved in the design of sub-micron microelectronic
devices are finding it necessary to go beyond the traditional drift—
diffusion theory. The foundation for this work was laid by the basic
physics-oriented research of the 1960s and 1970s. It is only reasonable to

343
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expect that the basic physics oriented research of today will eventually
find use in describing microelectronic devices of the future. Some of the
effects we have discussed here may play a more significant role in the
operation of conventional devices, intentionally or otherwise. Also, non-
conventional devices that rely on quantum effects (like resonant tunnel-
ing and single-electron tunneling) may find useful niches in specialised
applications.

But will non-conventional mesoscopic devices ever have a major revo-
lutionary impact on the electronics industry? At this point in time there is
really no way even to guess at an answer to this question, though there is
no dearth of opinions and prejudices. Microelectronic devices have been
continually shrinking in size ever since their inception 40 years ago;
currently they have a minimum feature size of about 500 nm. It is gener-
ally agreed that there are major barriers to be overcome if the feature size
were to shrink beyond ~ 50 nm. But experts say that on this scale the real
problem is not to build smaller transistors but to develop a scheme for
interconnecting them. It is likely that a suitable scheme will emerge in
due time but there is really no reason to believe that this new architecture
will require revolutionary rather than evolutionary devices for its imple-
mentation. The current status of mesoscopic physics thus seems some-
what like that of semiconductor physics in the 1940s when there was no
reason to believe that vacuum tubes would ever be displaced. But . . . who
knows?

Further reading

Feynman, R. P. (1992). ‘There’s plenty of room at the bottom’, Journal of
Microelectromechanical Systems, 1, 60.

This is the transcript of a talk given by Feynman in 1959, which explores
the immense possibilities afforded by miniaturization. Although the
progress in microelectronics since then has been truly impressive, only a
fraction of the possibilities envisioned here have been realized so far.



Solutions to exercises

Chapter 1

E.l1 1 =27000cm’/Vs=|e|ta/m— Tm=1.07ps

— ks = 20, =10%/cm

— Ly = vTw = 0.18pum
— v¢ = hke/m =1.67 x107 cm/s

n, = 1.6 x 10"/cm?

D = vit,/2 =149.21cm?fs, 7,(1K)=33.3ps = L, = /D7, =0.7pm

E.12(a) V(B =0)=0.7mV, I =25.5 pA, W =038 mm, L = 1 mm
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peak number (m): 9 8 7 6 5 4
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m
10 /
5
1/B
05 1.0 >

2e A(m) 2x16x107°C 1
h AQYB) 6.63x10*Js 0.09T

=5.3x10"%/m? - 5.3x 10" /cm?

S

E.1.3 (a) For a hardwall potential,

272

nk .2 hzﬂ'z
E=F +E + here E;=i"E,, E =
* 2m W Po ! 2mw?

= 0.54 meV

The number of electrons per unit length can be written as (E; < E; — E;)

ks 2

2
= — (for spi — = [2m(E; - E, - E;
. L ( rsPln)x227r/L nh & m(E« )

Normalizing the energies to Ej,

(b) For a parabolic potential (see Eq.(1.6.5b)), E; = (i + 0.5)hw, so that

Ef—Es . hwo
nW=2 ——(i+0.5
. gJ =B o5t

E

Electron density versus Fermi energy for the two cases are shown in Fig.
E.1.3. The question is what determines the Fermi energy in the narrow
conductor. If we assume that it is equal to that in the wide conductor
(E;i - E; = 17.2 meV) then we obtain from the plot: (a) n. = 4.5 x 10%cm
for the hardwall confinement and (b) n = 3.2 x 10%cm for the parabolic
confinement. In either case the electron density is smaller than what we
would expect if we multiply the areal density by the width:
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Fig. E.1.3. Plot of electron density versus Fermi energy for (a) hardwall potential and
(b) parabolic potential (Courtesy of M. P. Samanta).

nW =5x10"/cm?® x1000A =5x10%/cm

This is what would happen if the narrow conductor were much shorter
than the screening length. But in a long conductor we would expect the
electron density to be equal to nW in order to ensure charge neutrality.
From the plot we can see that this requires (a) E¢ — Es = 19.5 meV for
hardwall confinement and (b) E¢- E,=22.7meV for parabolic
confinement. In either case Ef — E; is little larger than that in the wide
conductor. The Fermi energy cannot be different in the wide conductor
and in the narrow conductor, since they are in equilibrium. What happens



348 Solutions to exercises

is that charge transfer takes place so that a dipole layer builds up around
each interface giving rise to a positive electrostatic potential in the nar-
row region relative to the wide regions. Consequently
E; (wide) - E, (narrow) = 2.3 meV for hard wall confinement
= 5.5meV for parabolic confinement

E.1.4 We have seen (see Eq.(1.6.10)) that for parabolic confinement in a
magnetic field

h2k2 wo

E(n,k)=E; +(n + $)hwo + —
2m wk

2
where & = w§ +(eB/m)

Proceeding as in E.1.3, the electron density can be written as

We rewrite this in the form

nLW - 22\/ Ef _( 05) ha)o

(wco/wo )3/2 (wco/wo )El

Note that this is exactly the same as what we had in E.1.3 with the fol-
lowing replacements:
nW E; - E; E; -

—

———— and
{wco/wo )3/2 E, (wco/wo)E,

nw—

Thus we can use the same plots as in E.1.3 (for the parabolic confining
potential) if we scale the variables appropriately.

(a) If we assume that the Fermi energy remains constant (as is appropri-
ate for a short conductor) then the number of modes changes whenever
the cut-off energy for one of the subbands

1/2
hooeo =[(heoo)” + (neBim)’|
crosses the Fermi energy. The number of modes is given by
Weo 2

M=1t[E‘ £ 1]
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where Int(x) denotes the highest integer less than x. Noting that
hwo =3.9 meV, m = 0.067 m,, we obtain,

M=4 if 49meV>hoo>3.9meV—-1.7T>B

if 6.9meV>hw,o>49meV—o>33T>B>1.7T

if 11.5meV>hw,o>69meV—>62T>B>33T
if 344 meV>hw,o>11.5meVo19.7T>B>62T
if hwe >34.4meV—->B>19.7T

TR
SR

(b) If we assume that the electron density remains constant (as is appro-
priate for a long conductor) then we calculate the quantity

mnW
3/2

V= —m
(wco/wo)
The number of modes can then be obtained making use of the plot in
E.1.3b:

M=1 if O0<v<5 M=2 if 5<v<13 M-=3 if 13<v<22
M=4 if 22<v<33 M=5 if 33<v<d45 M=6 if 45<v<58

Hence,

if Aweo <42meV—->B<09T

if 42meV<hwyg <51meV—-09T<B<19T

if 5.1meV <hweo <6.7meV—->19T<B<3.1T
if 6.7meV <hwe <9.6 meV—->31T<B<50T
if 9.6 meV <hwe <18.1meV—-50T<B<10.2T
if hweo >18.1meV—-B>102T

nono
=N W AR U
=8

RIXRXXKX

Chapter 2
E2.1

1= 2 M [ - )= 22N [ = ] = 2N [~ ]

To simplify the algebra set g = 1, ug = 0. This yields

1 (. u_lu
U=p"=—
1+ u" M 2e
ppicd =——— ——=1-—, [=—M
Hence €Vapplied > > N h
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Thus the contact resistance is reduced by the factor (1 — M/N):
h 1 M ATl 1
= —— 1 -——l==———-—

R 2e2M[ N] 2e2[M N]
As we might expect, the contact resistance is zero when N = M.
E.2.2 The conductance of a ballistic conductor is given by G = (2¢*/h)M
where M is the number of modes. In problem E.1.4. we discussed the vari-

ation in M as a function of the magnetic field for a short conductor and
for a long conductor. The former is appropriate in this case.

E.2.3 (a) Proceeding as described in Section 2.4 (see Eq.(2.4.9)) with
Vs =0, we can write

I 0e? h -L -T] (W

Ll= % - L -TIL|{W

L -Ir -Iv T ||Va
where Li=Tr+TL +T}

Vi Ry R: Ry (L
Inverting Vai=|Ru Rx Ryn|ibh
Vs Ry, Ry Rsu| |5

where Ry =

[TLTo + TFTR] Ry = [TRTo + TFTL]

2¢%A 2¢%A

and A=T - 2L LTk - T - RTy - TLT¥
=[f+ k][R + TR + 217 + 25T + 2 T |

Since I, = -I3 and I, =0, V, = I,][R2 - R3] so that the Hall resistance is
given by

Vi __h
Ry =1_f =27A [T - R][T + Tk ]
h L-Tk

28 T2+ T¢ + 2T¢ + 2T, + 2T Tk
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1 ! !

0 0.5
Magnetic field (T)

-0.5

Fig. E.2.3. Hall resistance calculated using the measured values of Tf, T and Tr. The

dashed line shows the directly measured Hall resistance. Adapted with permission

from Fig. 9 of K. L. Shepard, M. L. Roukes and B. P. van der Gaag (1992). Phys. Rev.
B, 46, 9648.

E.2.4 Proceeding as described in Section 2.4 (see Eq.(2.4.9)) with V; =0,

we can write
Lh - -IR] [V

I 2e?
L= % -k T -T|lw
I - - TR | Va
where TieTr+TL +Tr=M and T =T¢ +T1 +Tx
Vi R, R; Ru](h
Inverting Val=|Rn Ry Rulil:
Va Ry Ry Ru| |l
where R,= Iz [sz —T]-"z]
2e°A
and A=TT* -T]- B[R+ R]- 2L LT

Since I2 = I; =0, Vi = I1Ry; so that the conductance is given by

6orio2r B[R + T} ]+ 2L L
h L’ -1’
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T} [TL2 + TR |+ 21 LT
- [TL + TR][ZT]-" + T+ Tk ]

T

2¢? T[T+ Tk]+ 20Tk
h 2T1% +TL+TR

T -Tk[
Ib+TF+_[.u]_

2+ L +Tx

If there is no magnetic field, then Ty = T, so that

2

2
G=%[T0+Tp]=eM

if Tr=0

2
=2eM £ =Ty

E.2.5 Proceeding as we did in Section 2.6 we can write the current in
lead p at energy E, due to a scattering state (g,k) as

. 2
ipn(q) = f[épqé,.,o ~ Ty (En, E)]

Assuming that a scattering state originating in lead g is occupied accord-
ing to the Fermi function f,(E) we have,

1,= qz f F(E)ipn(q)dE = % f[ f(E)- qE Tyo(En, E) fo(E)|dE

E.2.6 We can write

(nk + eBy)’

] .
Xow D Es + 2L+ P2 ()| 5,0, ) = E Xt ) X )
2m 2m

k' + eBy) 2 ]
Xns )| Es + (“‘T) + 2=+ UO) | Xk 0) = E X 0) Xns )

Subtracting we obtain

%(k -k )J [xm,k (&;—k') + eBY) Xn }dy =0
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Hence J’[xm,k(h(k;k')+eBy)x",,]dy=O if k=k

By normalizing the wavefunctions y(y) appropriately we can ensure that

j[x""‘(h(k; £ "'eB)’)an ]d)’ =

as stated.

E.2.7 We can write

‘[ d 1 ,
KE)= 1(E) -_[[E exp[(E - E' YksT] + l]dE

’ d 1 ,
'[ [ AE-E) eplE-E' )/kaT1+1]dE

. 4 1
Defining F(E)= _E(exp(E/kBT) T 1)
we can write f(E) - f(E) -fR(E - E')E'

FromBq.25.1),  I= % [T(EXE {Fr (E - E')E"
- f[% [TEFE-E )dE]dE'
Eqgs.(2.5.4)«2.5.6) follow readily.

Chapter 3
E.3.1 (a)

- Te1ps + Tz fho

Ip=0= TPl[/"P - "‘1]+ TPZ[#P - #2] - Te1 + T2

TPl

Setti =1and u, = 0: -
ne e ke He To1 + Tp2
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(b) Tpy

1F [ 2

5
>

T

P

. p _ T i2kd,
tp = g e [1 + libialT;emg (coherent)

b*(1- 1 -
Tm=e|l+ (2 D | e+ 62(1 D (incoherent)
1-2°A-T)|  1-2°(-T)
Tp,
1 x 2

e

J& AT ey eT

o=V € and Tppm
T 1 i 1-T e PU1-41-T)

(c) Assuming weak coupling, we have c~1, a~0 and b ~ 1, so that in
the incoherent case

Tp1~£(2—T) Tp2-£T

2-T =1- T (incoherent)

Hence =
Ue 5

This is simply the average potential of the +k and the -k states in Fig.
2.3.1. In the coherent case

tpy = «/Eei"d‘[l +iy1-T ei2* ] — Tp1~ £[(2 -T)-241-T sin(2kd2)]

tpy =~ ’\/;‘\/-T_eik(dﬂdz) > Tp,meT
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_(1-9) - VI-Tsin(2kd>)
1-v1-T sin(2kd;)

Hence ue (coherent)

E.3.2 Consider an infinite wire with a transverse confining potential U(y)
and a zero vector potential (Fig. 3.3.3). The Hamiltonian is written as
(see Eq.(3.3.2))

Its eigenfunctions are given by

Van(e) = T a0 expli65] E3.1)
where [-iiz—+U(}’)}X ) = emo Xw(¥)

2m ayz m 5 m
and Emp = Emo + hzzz i

Substituting into the eigenfunction expansion (Eq.(3.3.17)) we obtain

1 Q Xn() X () expiB(x - x)]

Gi(x,y;x,y) =
x.y:%.) L2 E-gno-(WB2m)+in

B

where we have assumed that the transverse mode wavefunctions are
xm(y) real. Replacing the summation by an integral according to the
usual prescription

L
3 -

exEI iB(x - x") I

. R m ?
- d
we obtain G*(x,x') e ZX».(}’)X».()’)J‘ﬂz K+ 1) B
where LR 1) R S|
h E-Us

The integral is best done using contour integration techniques. The inte-
grand has two poles at
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B=xkn V1438 ~2kn (1+£)

The infinitesimal quantity & serves to move the poles off the real axis as
shown in Fig. E.3.2.

Imaginary T x=x'>0

:\bkeal
x l j

x—=x'<(0

Fig. E.3.2. Contours in the complex S-plane used to do the integral.

For (x - x") > 0 we close the contour in the upper half plane (where the
integrand is bounded) and thereby pick up the residue for the pole at posi-
tive k to obtain (& —0):

GR (533 2,Y) = S = —— 2 (9)2n () EXD[ ik (x - )]
v,

For (x - x) < 0 we close the contour in the lower half plane and pick up
the residue for the pole at negative k

G*(x,y;%,y) = 2 ——x,..(y)x,.. ) exp~ikn(x - x)]

in agreement with the result obtained earlier using more elementary tech-
niques (see Eq.(3.3.15)).

E33

Fig. E.3.3. Retarded Green’s function for a semi-infinite wire.

Let us first calculate the Green’s function for a continuous semi-infinite
wire that terminates on one side (x = 0) in an infinite potential (see Fig.
E.3.3) where the wavefunction must go to zero. The eigenfunctions are
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given by (cf. Eq.(E.3.1))

wm,ﬁ(x) - \/% m(y)sm[ﬂx]’ sm,ﬁ - £m,0 + hZfl (E32)

Substituting into the eigenfunction expansion (Eq.(3.3.17)) we obtain

] 2 Xm(9)2m ()sin’ (Bx)
O R ) apearred o

m B>0

where we have set x' = x since we will only need the Green’s function be-
tween two points with the same x-coordinate. Converting the summation
over B into an integral according to the prescription

L
2 el
we have

R (xyix,y) = 2 [ sin® (fx)
Gwyn) =23 xm(y)xm(y')‘[ Eene- W F i T

Noting that sin®(fx) =

2 - exp(2ifix) - exp(-2ifx)
4

we can write

1- 2
G xyixy )--—Exm(y)xm()’)f . [ °f,fl(‘22";])+mdﬂ

and using contour integration as in the last example we obtain (cf.

Eq.(3.3.15))

G (xyimy) = -3 EE y explikrla(r)  E33)
where ky = ——-————“zm(Eh_e""o) and v, = &
m

So far we have assumed both x- and y-coordinates to be continuous.
What we need is the Green’s function on a discrete lattice, having lattice
points spaced by a, between two points along one edge of the lead (Fig.
3.5.2). We can obtain this from Eq.(E.3.3) simply by setting y and y' to the
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desired values and setting x = a:

gk(pi’pf) = [GR(x’y;x’y')]x_a-’y-pi;y'-pj

- - 250ad) () explikna] (7))

.

Using the relationship between the velocity and the wavenumber on a
discrete lattice (see Eq.(3.5.8b))

hvn = 2at sin(kna)

we obtain the desired result.

It is important to note that we set x = a and not, say, equal to zero. The
eigenfunctions in Eq.(E.3.2) satisfy the discretized Schrédinger equation
for a semi-infinite lead only if the first point on the lead is located at
x = a. To see this, consider the tight-binding equations for a semi-infinite
lead:

(n>1) (E-Us=-20)yy(m)+typ(n+D+ty(n-1)=0 (E.3.43)
n=1) (E-Uo-20yD)+ty(2)=0 (E.3.4b)
Eq.(E.3.4a) is satisfied by a solution of the form

y(n) = A sin[kna]+ A, cos[kna)

for all values of A; and A, as long as E =Uo +2¢(1-cos(ka)). But
Eq.(E.3.4b) is satisfied only if A, =0, showing that our choice of wave-
function in Eq.(E.3.1) is correct. But if the first point were somewhere
other than n = 1, a different combination of A; and A, would be required.

Actually for a one-dimensional lead we can obtain the Green’s function
quite simply by solving the tight-binding equations directly:

(n>1) (E-Uo-20g"(n)+tg"(n+1,)+tg"(n-1,1)=0 (E.3.53)
n=1 (E-Us-20g" D +tg" (2, =1 (E.3.5b)
Eq.(E.3.5a) is satisfied by an outgoing wave solution of the form

g" (n1) = 8" (1D exp[ik(n - 1)a]

as long as E =Up +21(1 - cos(ka)). Using this solution in Eq.(E.3.5b) we
obtain

gt (L) =[E-Uo -2t + texp(ika)|" = - % exp(ika]
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which is the single-moded version of Eq.(3.5.18).

E.3.4 From Eq.(3.4.6) we can write for n = m,

h? v,.v,,.

s [ =

D %:(@)G" ()2 (P2 (@1)GH @', 1)t ()

[SAFS

where we have made use of the relation GA(i',j") = GR(j',i")*. Hence we
can write

w32

= Y LY )G )T GA () = TH[ T, G [,G* ]

Lif'

- AV
where (i) = %xm@i)%xm@i-)
E3.5:
@ AU®
LEAD 1 LEAD2
—_—
®) 10 A @2

Fig. E.3.5 (a) A 1-D conductor with a delta function scatterer. (b) The conductor is
represented by a single lattice point A and each mode in the leads is represented
by a single node.

We can write the wavefunction as
PYx)=e®+5:e™ x<0 and W(x)=sue®™ x>0
In order to satisfy the Schrédinger equation
K 9 ‘I’

the first derivative of ¥ must be discontinuous at x = 0:

[or].o &S weo
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while W itself must be continuous at x = 0. Hence

S21 = 1+ S11

. . 2mU, 2U,
lkSz1 - lk(l— S11) + mz g Sz > Sz1(1 - -—2-) =]- S11
h ihv

hv
and sy =

so that, S11 ™= 2 "
iAv - Uo iAv - Uo

where the velocity v (= hk/m = (2mE)"?/ 1) is the same in both leads,
since the potential is the same. From the symmetry of the problem,
522 = su and s12 = s21.

(b) We choose a discrete lattice consisting of a single point ‘A’ so that
all matrices are of dimensions (1 x 1), as in Fig. E.3.5.

From Eq.(3.5.9a): EI - Hc =[E - (Uo/a) - 2t
From Eq.(3.5.18): I} = 23 = —texp[ika]

From Eq.(3.5.17): G® =[E - (Us/a) - 2t + 2t exp(ika)]”
Making use of Eq.(3.5.8a,b), we can write

a

G® =[-(Us/a) + 2itsin(ka)| " = —
= 4o

The S-matrix is now obtained from Eq.(3.4.3) (dropping the factor a from
G* since Eq.(3.4.3) applies to a continuous representation):

Uo ihv

v _linv-Us ikv-U,
ihv - Us ihv Uo

ihv-U, ihv-Up

Sgp= =0 +

E.3.6 (a) The results follow readily from Eq.(3.2.4). (b) Plots are shown in
Fig. E.3.6. with 1, 5 and 15 lattice points between the scatterers. The plots
are truncated for E > 4¢, where

2

tm 2h 5 = 23 meV x (no. of points between the scatterers + 1)
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T 1 T T T T (b)
09 T
08| B
0.7F -
0.6 -
0.5+ b
041 -
03 e
0.2 -
0.1} J k e
0 ] L L 1 0 1 1 J 1
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Energy(eV) Energy(eV)
(c) 1 T T T T T T (d)
09+
g 08}
£ 071
£ o
8 0.5
2 o4} J
g 03f .
= 02 4
0.1 ) -
0 i L i L 0 i 1 i L
0 0.5 1 15 2 2.5 0 0.5 1 15 2 25
Energy (eV) Energy(eV)

Fig. E.3.6. Transmission probability versus energy. (a) Exact, (b) 1 point in the well,
(c) 5 points and (d) 15 points (courtesy of M. P. Samanta).

E.3.7.(a)

c Ve Vel[c Ve Vel [ c*+2¢ e(a+b+c) Je(@+b+c)
Ne a b||[Ve a b|=|Je(@a+b+c) a*+b*+e  2ab+e
Je b allve b a Je(@+b+c) 2ab+e a+b%+¢

L

100
-l010
001

Hence we must have

a?+b’ml-¢, *=1-2¢, 2abm-¢, a+b+c=0
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These relations are satisfied if

a=(1-¢c)2, b=(1+c)2, c=+1-2¢

Other possible solutions are obtained by interchanging a and b, or by tak-
ing ¢ as a negative quantity.

(b) Using Eq.(3.2.1), (P = exp(if))
e AGAEAGA [0

S
2

t=[«/?«/?

e

-[Ve e

e
-

[ I ((a2 +b*)P*  2abP*
2abP*  (a* +b*)P?

r1_ _ 2 2 -1
- [ Ve «/E] 1-@ 2t;‘)P eP i PJe
| &P 1-(1-e)P?*| |PVe
eP [t 1] 1-(1-¢)P* —¢gP? 1
(1-P*)(1-c*P?) -eP? 1-(1-¢&)P*|1
2eP
(1-c*P?)
4¢? 4¢?
Hence = = E.3.6
l 1-c2P? lz 1-2c?cos(28) +c* (E36)
®) ©
l s T T T 1 F T L] )

09l 09 .
Zost i 2 08| s
E o7} H Z 07} .
‘g 0.6 ! ‘g 0.6} .
gO5F § 0.5 §
2 04| 2 04} .
§ o3 : g 03} .
€ 02} k Jl & o2} l K .

0.1} l J k . 0.1+ J -

o o
Energy (eV) a0t Energy (eV) a0t

Fig. E.3.7. Transmission probability through a single-moded ring with radius

r= 1000 A calculated () from Eq.(E.3.6) with £ = 0.025 and (c) numerically from

Eq.3.5.20) using a lattice with 140 points along the ring (courtesy of
M. P. Samanta).
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C) e —

0.9}

Zos|

< 07+

%o.e -

§ 0.5}

8 o4l

g 03}
= 0.2

011

L 1 1 | (1
0.05 0.1 0.15 02 025 03 035 04
B in tesla

(=]

Fig. E.3.7.(d) Transmission probability through a single-moded ring with radius

r =1000 A versus magnetic field calculated numerically from Eq.(3.5.20) at an

energy corresponding to the second peak in Fig. E.3.7¢, E = 0.244 meV (courtesy of
M. P. Samanta).

E.3.8 For a ballistic conductor
2¢* n* 2
G= TFE Zv,f,(k)lGR(m,k;m,k)l
Neglecting the real part of the self-energy we can write from Eq.(3.7.4)
2R (m, k;m, k) = 25 (m, k;m, k) = —%hLL(kl

1
(E - €mu) + i(Avm(k)L)

Hence G®(m,k;m, k) =

sothat G = ___2 2 (E - hzvf.(k)/Lz

#) + (RPva(kYL?)
Vs 2¢?
2 Z AO(E - €mp) = e 2 f 1miO(E - emi )dk
- 2¢* 1w 2e*M
K 2" Tk

E.3.9 We note that reversing the magnetic field is equivalent to taking
the complex conjugate of the Hamiltonian (see Eq.(3.5.2)). Hence

[E-H-in],[6*],=1 — [E-H+in],[6*],=1
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But [E-H+in],[6*], =1

o], -[e1,

Since the advanced function is the conjugate transpose of the retarded
function we obtain the desired result (‘t’ denotes transpose):

t
[GR]-B - [GR]+B
From Eq.(3.4.6) (assuming zero magnetic field in the leads)
[5wm ] = —Bm + iRy V,.V,..ffx,,(yq) [qu;()’q;)’p)]_sxm (75)dy4dy,
= = + it/ vanf Xn(Vp) [G}q()’p;)’q)]w Xa(¥2)dy4dy,

= [s,,,,. ]+B

Chapter 4

E.4.1 (a)

Gp: q=1 g=2 q=3 q=4
p=1 0 pGe (1-p)Gc O
p-2 Ge 0 0 0
p=3 0 0 pGe (- p)Ge
p=4 0 (1-p)Gc O pGc

Note that we have written G33 = pGc in order to have all the sums and
columns add up to the same number G¢, assuming all leads to have the
same number of modes. However, the actual currents are unaffected by
what we choose for the diagonal elements of Gq.

(b)
L=0: Vo=V
13=0! V3=V4
L =1 =pGe(Vi-V2)+(1- p)Gec(Vi - V3) = (1 - p)Ge(V2 - V3)
Hence RH-VZ_‘,’- 1 1

I  Gcl-p
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E42
Gp: q=1 g=2 q=3 q=4 q=5
p=1 0 0 (1- p)Ge 0 pGe
p=2 Gc 0 0 0 0
p=3 0 0 pGe 0 (1- p)Gc
p=4 0 (1-p)Ge 0 pGe 0
p=5 0 pGc 0 (1- p)Ge 0
Setting V4 = 0,
L=0: V2=V,
13 =0: V3 = Vs
Is=0=p(Vs-V2) +(1-p)(Vs~ V) Vs=pV2
Li=1I =ch(V1 - Vs) + (1—p)Gc(V1 - V3) = Gc(Vl - VS)
- 1
Rym—2—2 o —
Hence H I G
Chapter §
ES51 J=-0Vp, VJ=0 — Vip=0
In a circular geometry we can write
-VIn(r/Lein) R Vir
)= —————— r)=Ff —————
YO L) O T/ L)
. oVr
H - e e ——
ence Jr)=+F Lo/ L)
so that the net current is given by
noV 1 no

I-fJ.dS-m - G-V-m

E.5.2 We can write Eq.(5.5.30) in the form

Fnm 260 5) 0 F)
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h h
where Bo= deipea " 4eiDr,
u-2.7m2Ns=|i|-E“— - Tp=1ps

m

o=|e|nu=1.6x10"" Cx1.6x10°/m*x2.7m*/Vs=6.9x107* Q™

69x10* Q!
(1.6 x10™° C)? x 2.9 x10%/cm? eV

o=e¢’ND—+>D= =149 cm?/sec

Hence Bn = 111 G.
By adjusting 7, we can fit the experimental data. The data at T = (0.3 K
can be fit if we assume T, = 175 ps (B, = 0.64 Gauss), so that

_AR A% o018 w(1+—111G)-w(1+0'64G)
R o B 2* 7B

E.5.3 (a) We can estimate the period by noting that there are 19 oscilla-
tions in a range of 30 mT: B, = 1.58 mT. Hence

S= L =262x10"2m?2 — d=1.83 Mm
|e|Bp

(b) For a thick ring there is a continuous distribution of periods because
the area § is not unique. The longest period corresponds to the smallest
area which is that enclosed by the inner circumference

By(max) = —’;—— =529 mT

|€]Suin

while the shortest period corresponds to the largest area which is that en-
closed by the outer circumference

=1.32mT

B,(min) =

| €[S

Due to this wide distribution of periods the conductance changes look
more like noise than like oscillations.
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E.5.4 We can define (cos8) as

+7

f cos@P(6)de
(cosB)m=_— sothat — . 12{c0s0)
[P©)o To T

Now let us evaluate the conductivity correction due to the first of the lad-
der diagrams shown in Fig. 5.5.10:

I'(K,k) = |U'Zz"' .U

=~ P(6-0)

Inserting into Eq.(5.5.21) we obtain (we are ignoring spin and dividing
by 2)

Ao® = %’- 2 v:i(K) | G [ 2 v:(K) |G(K) [ PO - 6"

2
hUoff k hkcos@ 12 _dkd8
an* m (E-&)*+(n)

kK Bk cosb' 1 ,
ff TP Iy P(6 - 6")dk do

- €AUS L ik 8(E - £0)5(E - ex )derdex
2” ff(4”hn)2 k k kUCy

x f cosf cos@' P(6-0')d8' do

2 UO

" Sy hz fcosOP(O)dO

Making use of the relations (note that we are ignoring spin)

. mU¢
2;;h2 and n= -—‘—':— = yp hozf (O)de

Ny =

we obtain

ez

AOD - ———
32x°hny?

2 2
dah’n 4nn,m(cosB) = £ 2 (cos8)
m m 2n

2
=% p{cos 6)
m
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Similarly if we evaluate the next ladder diagram we obtain
e’ny 2
A0 = —1{c0s6)
m
and so on. So the total conductivity is given by

Ao = —e;ﬁr[l +{cos ) +{cos )’ + ]

e’n, T e nTm
m 1-{cos8) m

Chapter 6

TEL

For a rough estimate we assume an effective well width equal to the
actual well width plus (say) a fourth of the width of each barrier:
w=50+125+125=75A.

W? (6.63x107> J5)°
8mw?  8x0.067x 9.1x107* kg x (75 x 10™° m)*
g

Eé6.1

E, ~ ~100 meV

For a more accurate calculation, see for example, Chapter 1 of S. Datta
(1989), Quantum Phenomena, Addison-Wesley.

-3 -19
L. R _\/leOOxIO x1.6x1077 T 55 %107 emysec
m

0.067x9.1x107 kg

v 7.2x107 cm/sec

vt o 12x10 cmisee 0 108 — Ay e=31.8meV
2w 2x 75100 cm | ox107s v me

To estimate the transmission probability through one of the barriers, we
note that the decay constant is given by

y = ’Zm(lgz— E))
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-31 -2
_\/2x0.067><9-1><10 kg x200x1.6x10 J=5.9x108/m

(1.06 x 107 J 5)?

Hence T ~exp(-yd)=53x102—> T =I;=hAvT =1.7meV

Iy = Aty = 0.7 meV

Hence the fraction of the current that is coherent is given by

_fitls 34 g3
Ii++I, 4.1

E62 PR 2R 515 S FYN
h F1 + rz
T f, ™~ 6804 x 2.9 x10°/cm® meV x 10meV
S nh
=19.7 kA/cm®
E63

—| 7 r, Uz
Coherent 2 ’z » Coherent

> ' transmission
reflection @— ‘1 "1

®) * - 649
Scattering
Ty

Fig. E.6.3. A resonant tunneling diode consists of two barriers with scattering matrices
as shown in series. Scattering processes cause electrons to leak out of the coherent
stream as shown,

It is easiest to calculate the coherent transmission probability 7. and the
coherent reflection probability R, and then obtain the scattering probabil-
ity Ts from the relation

Ts+TL+RL=1

To calculate T.. and R we sum the different paths as shown in Fig, 3.2.2,
taking care to insert a factor of exp[-2aW] every time we traverse the
well. We obtain

TL(EL)=

ttz exp[—aW] ’
1-nr exp[— 2aW]
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2
tnt] exp[-2a W]

1-rnr exp[—ZaW]

2
Ru(EL) =|n + n-n exp[—ZaW]] }

1-rdn exp[—ZaW

where we have made use of the relation: nn'-tt} =1 (since the
S-matrix is unitary, its determinant is one). Hence,

LT exp[—2a W] Nt

Ti(EL) = N
B =T RE, exp|—4aW]- 2RiR; exp[-2aW]cosO(EL) D

R +R; exp[-4a W]~ 2/RiR, exp[-2aW]cosO(Er) _ N
1+ RiR; exp[-4aW]- 2JRiR; exp[-2aW]|cos(EL) D

Ru(EL) =

We will now simplify the three quantities D, Nr and N one by one, mak-
ing suitable approximations.

2
D =(1-yRiR; exp[-2a W]} + 2/RR; exp[-2aW](1- cos6(EL))
Approximate the cosine function by a quadratic function and assuming

that Ty (=1-R:1), T» (=1 - R;) and aW are all much less than one, we
obtain

2
D.-(—Tl—+£+2aW) +6?
2 2

Using the same approximations we can write

Nr~TT

Nz = (VR - R, exp[-20W])" + 2J/RiR, exp[-2a W] (1 - cos O(EL))

2
~(-Tl-3-zaw) +6?
2 2
Hence, T~ Nx = ULt )
D 92+(T1+T2+4aW)
2
1-R ~1-N2 ____ L(T2+ 4aW)

2
b (£+£+2aW) +6*
2 2
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Tom1—R,—T, ~ - T4aW71 i
(—1+—2+2aW) +6?
2 2
I d0 EL_Er
Writ Omw— (EL-E)=
fHing dEL( - ) hv
and defining It m aivDi, D= hvD, T, =hv(4aW)
we obtain
ILT: LT
Ti. (L)~ = 5= ————Ay(EL- E:)
(EL-E,)2+(F‘+F”F‘") I+ +T,
2
LT, LT,
T(Ew)~ 7= Ag(Ev~E.)
TI;
(EL—E,)2+(FI+I;2+F¢) 1+ + T,

where Ag(€) is a Lorentzian function with a linewidth of T = I; + T, + T,

r
Ap(€) >
2 +(r2)°
E64
IV ———  E+E,+2U, 2
O E,+05U, 1
I ——— E+05U, 1
I — 0 0
ENERGY NUMBER OF
&) ELECTRONS (N}
N
/ ————PF,
E + E,+
05U, 150,

Fig. E.6.4 (a) Many-particle states in a structure with two levels E; and E,.
(b) Number of electrons in the structure as a function of the Fermi energy.
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Equilibrium statistical mechanics tells us that at zero temperature any
system goes to the state having the smallest value of (E — NEy). It is easy
to see from Fig. E.6.4 that the states of the system will change as follows
if we gradually increase the Fermi energy:

Ei< E; +0.5U, State I
E, +0.5Uy<E;<E,+1.5U, State II
E:>E, +1.5U, State IV

As long as E; > E;, state III is never reached. The number of electrons in
the structure changes as shown with Fermi energy. It can be shown from
Eq.(6.3.4) that the conductance spectrum consists of two peaks located at
the energies where the particle numbers change:

G(Ef)-—(rl:‘rz L{E:-E,- 05U0]+ IY rz L[Ef E,-1. 5U0])
Chapter 7
E71
(a) Sinel - kt/kl gk_z

sin 92 kt / kz kl

where k. is the transverse wavevector (the same in both media), while k;
and k; are the magnitudes of the wavevector in the two media:

E=h2k12_U+h2k22 - ﬁs E
2m 2m ) E-U
hence sin6; - E-U
sin 6, E
(b) In this case
L R Y
2my 2m, ) m;
sin6, m

sin 6, m
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Chapter 8
E8.1

ﬂ-i[w(vzw) \p*(vzw)] (Ve wvy
e

]_ eV.A \p \p]

[p-cATW =[-inV - eA][-inV - eA]w
= -1V + &’ A’ W + 2iehA.V W + ieh W (V A)

Wp-eATW*-¥*[p-eATW
- -hz[\pvzw* -y vzw] - 2iehA[WVW* + WV W] - 2ier V Al W

Hence

. * * 2

in.J_ Yo eAJW" - W'[p-cAlY 1 yry gt pow]

e 2m
since Hc= p-eA +U
2m
E.8.2 Using Eq.(8.5.3) we can write
HcG" - G"Hc = H.G*2"G* - G*2"G*H, (E8.1)

From Eq.(8.5.2), HcGR = EGR -ZRG* -1 (E.8.2a)
Taking the Hermitian conjugate G*Hc = EG* - G*Z* -1 (E.8.2b)

Substituting (E.8.2a,b) into (E.8.1),
HcG" - G"Hc =[EG® - £*G® - I]2"G* - G*st[EG* - G*z* - 1]
=Gtz - 3I°GA - ZRG" + G2
where we have made use of Eq.(8.5.3) again.
E.8.3 We can write
Te[2°G?]- [P r:30)G™ (1, 7;E ~ hao) G* (7, r; E)drdr' d(hew)
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Solutions to exercises
Tr[z*G"]- [ P h0)G? (1,5 E + heo)G* (P, r; E)drdr d(ho)
Hence f Tr [2°“'Gll ]dE
- f f f f D(r,r;hw) G*(r,7;E + hw) G" (7', r; E)dEdrdr d(hw)

- f f f fD(r', r;hw)G? (P, r;E)G" (r,r;E - hw)dEdrdr' d(hw)
-fTr[Zi“G"]dE if D(r,r)=D(r,r)

E.8.4 Using Eq.(8.1.5) we can write

[E—HC—ZT +iz® ”GT —iG“]

+iZo E-Hc+2T||-iG* -GT
E-Hc-3R-izP +ixi Gr+iG* -iG®
+iZ E-Hc-3IR_jz -iG* Gt +iGP

Consider the (11) term of the matrix obtained after multiplication.
Making use of Eqs.(8.5.3), (8.5.2a) and (8.2.3) we obtain

[11]>[E - He - 3* - i2°][G* +iG" ]|+ 26
- I+{E-Hc-2*|G" +2"[G" + 6" - iG]
= 1+37iG* +G"+GP-iG*]|=1
Similarly we can work out the other elements of the matrix.

[12] > ="[-G" -iG* +iG* - G*] = 0 etc., etc.
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anti-localization 213
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BBGKY hierarchy 330

bistability 286

Boltzmann formalism 5, 285, 322-8

Bose~Einstein function 308

Breit—-Wigner formula 260
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Biittiker formula 78-86, 114, 131, 1824,
189-95

charge quantization 247,270

circulating currents 43
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state 288

collision time 16

conductance coefficients or conductance
matrix 79, 93, 123, 183, 189-90, 194-5

conductance fluctuations 215-22, 241, 285

conductance function 90-1

conductivity 41-4, 59, 185

contact resistance 51-7, 112

Cooperon 241

correlated paths 217, 220, 244

correlated scattering 20, 209, 285
correlation energy 90-2, 106

correlation function 78, 102, 294-340
cross junction 113

current density 23, 98, 31518, 339
current fluctuations or noise 97, 109, 158
cut-off energy 12

cyclotron 26, 33, 37,178

de Broglie wavelength 1, 2, 16, 209, 248

degenerate conductor 14-15, 37, 102, 128

density matrix 77, 102, 295

density of states 13, 27, 45, 149, 154, 161-2,
231, 255, 301

device 2-3,248, 322, 3434

diagrammatic theory 22242, 340

diffusion coefficient 22, 41-2, 62

directional coupler 77

discrete lattice 144

disordered contacts 190-1

dispersion relation 12, 32-7, 144, 277-8

dissipation 69, 103, 319

distribution function 66-71, 78, 295, 323-8

double-slit experiment 282, 289-90

drift velocity 8, 23, 37

Drude model 23-6, 223, 231-2, 243

edge states 176-93

effective mass 10-11

eigenfunction expansion 138, 1534

Einstein relation 3942, 59, 62

electrochemical potential (see quasi-Fermi
energy)

electromagnetic waves 5, 277, 284

electron—electron interaction 19, 21, 132, 209,
222,241, 244, 268-70, 288, 293, 300,
307,328
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electron—phonon interaction 132, 293, 300,
308, 328,332

electron waveguides or quantum wires 30,
213,279, 289

energy channels 87

energy distribution 66~71

energy relaxation length 69-71

ensemble-average 158, 198, 218, 22242

exclusion principle 21, 93-102, 115, 289

Fabry—Perot interferometer 287

Fermi energy 3, 8, 12-14, 21, 27, 45-6, 87,
176, 185, 223, 266, 268, 271, 274

Fermi function 14, 88, 101

Fermi surface property 424, 183

Fermi velocity 16, 21, 37

Fermi wavenumber 15

Feynman paths 126-8, 131, 163-7, 2046,
210-12, 221

Fisher—Lee relation 13940, 148, 171, 173, 210

floating probe (see voltage probe)

focusing 281-2

four-terminal resistance 78, 82-5, 125

fractional quantum Hall effect 186-7

‘fractional quantization’ 189

gallium arsenide (GaAs) 2, 4, 7-11, 74, 220,
247, 266, 273, 283

gauge 30, 98

geometrical optics 279-82

gold 2-3,19

golden rule 231

Green’s function 5, 102, 13274, 223-39,
285, 293-342

group velocity 32-6

h/e, h/2e or h/Ne oscillations (see
Aharonov-Bohm effect)

Hall measurement 2, 4, 9, 23-5, 83, 125,
183-95

Hamiltonian 133, 142-7, 151-3, 2234, 301,
302

Hartree potential 270

Hartree—Fock approximation 307-8, 320

HEMT 8

Hilbert transform 309

hologram 288

Husimi function 328

impurity scattering 9, 16, 19
inelastic scattering 67, 71, 107, 163
interface resistance (see contact resistance)

Josephson effect 290
Keldysh formalism 293

Kirchhoff’s law 80-1
Kubo formalism 157-60

Index

ladder diagrams 235, 243

Landau level 25-9, 33, 156, 176-93, 213,
239,279

Landau plot 45

Landauer formula, Landauer approach 57-65,
86, 109, 160, 202, 215, 262, 319, 322

Landauer-Biittiker formalism 102-8, 131,
188, 319-21

laser 289-90

lifetime 152-3, 230, 243, 256, 304

linear response (or low bias) 3, 79, 88-92,
106, 262, 267, 272, 322

lineshape function 263, 270

local density of states 155-7

local equilibrium 60

localization 5, 20~1, 196244

localized states 186-7

Lorentz force 37

Lorentzian 154, 252, 261, 264

magnetic field in the leads 141

magnetic impurity 19

magnetoresistance 23, 26,212, 220

manganese impurity 19

many-body theory 328, 339, 340

matrix representation 142-5

maximally crossed diagrams 235-7

Maxwell equation 276

mean free path 1,2, 16, 19, 45, 201, 213,
322

method of finite differences 141-5

mobility 8,23-5, 41, 45

modulation doping, MODFET 8, 24-5

momentum relaxation 8, 9, 16, 23, 130, 177,
213,243

momentum (or &-) representation 165, 224,
240, 298

MOSFET 8

multi-moded lead 136~7, 140

multiple scattering theory 285

multi-terminal conductors 924, 220

negative resistance 3, 75, 248
noise (see current fluctuations)
non-degenerate conductor 14-15, 101
non-invasive measurements 76
non-linear optics 285-8

non-local conductivity 158
non-local potential 302
non-locality 220-1

non-Lorentzian shape 154
non-ohmic behaviour 191-2
non-perturbative approaches 329
Nyquist-Johnson formula 109, 158

occupation factor 258, 265
ohmic behaviour 1, 50
Ohm’s law 62-5, 193, 197-200, 207, 248
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one-particle picture 270-2

open system (or open boundary
conditions) 145

optical (see photon)

orthodox theory 272

orthogonality 97, 99, 115, 137-8, 141, 153

overlap integral 144

peak current 2556, 273, 330

periodic boundary condition 13

persistent currents 245, 343

phase-correlation or quantum correlation 296,
299, 328

phase-relaxation 1-2, 16-17, 21-2, 45, 77, 90,
129-31, 201, 206-9, 213, 242, 273, 282

phonon 9, 16, 69, 264-5, 308-11, 330-8

phonon peak 331

photon, optical 3, 5, 77, 256, 276-92, 295-6

pinning (Fermi energy) 186

plateaus 25

Poisson equation 73, 92, 209, 248, 268

position representation 165, 224, 240

probability matrices 128

quantized conductance 55, 60

quantum chaos 245, 343

quantum dots 270, 272

quantum Hall effect 5, 175-95, 279

quantum wires (see electron waveguides)

quasi-classical approximation 328

quasi-Fermi energy (or electrochemical
potential) 13-14, 3741, 50-1, 56-7,
60-2, 66~77

quasi-particles 272, 324

radiative transfer 285

rate equation 257-8, 265

reciprocity 79, 83-5, 1234, 173, 220
reflectionless contacts 50-1, 57, 59-62, 112
resistivity 23-6, 84

resistivity dipoles 72-3, 76

resonant tunneling (see tunneling)

retarded function 133, 300

scanning tunneling microscope 76, 157
scattering functions 299-340
scattering matrix (S-matrix) 119-40, 170-3
scattering state 95-8, 115, 141
screening length 16, 734, 92, 209
second quantization 5, 293, 298-9
self-consistent Born approximation 307
self-energy 132, 147-59, 226-31, 30040
semi-infinite lead 146, 171
Shubnikov—deHaas (SdH) oscillations 26~9,
213

(see also quantum Hall effect)
silicon 8,176
single-electron charging 222

37

single-electron tunneling (see tunneling)

size quantization or quantum size effects 213,
270

Snell’s law 291

space-charge 8, 248

spectral function 149, 154-5, 163, 254, 263,
301, 329

spin fluctuations 19

split-gate 55, 188, 190

spontaneous or stimulated emission 310

strong localization 200, 222

strongly correlated transport 328-30, 343

subband 12, 14, 29-37, 133, 177

sum rule 79, 92, 97, 122-3, 149

superconductor 290, 343

thermal broadening function 90-2, 263
thermal source 289-90
thermionic emission 107
three-terminal resistance 80-5
threshold voltage 248-50
tight-binding model 141-5, 311
time-ordered function 300, 339
time-reversed path 205-6, 211
transfer Hamiltonian formalism 161-3
transmission function 5, 87-8, 91-2, 97, 101,
114, 119-25, 148, 162-3, 167, 171-3,
249-53, 3212
tranverse modes 29-37, 45, 50-62, 98-9,
119, 136, 148, 150, 173, 251
tunneling 92--3, 161
coherent 4, 247-56
double-barrier 5, 246-74
r-xa4
interband 4
resonant 4, 92-3, 247-66, 2734, 330-8, 344
sequential 4, 25666
single-electron 4, 266-75, 288, 3434
two-dimensional electron gas (2-DEG) 7, 8,
11, 247, 266
two-terminal resistance 78, 220

uncertainty relation 327

valence band 7

valley current 250, 263-5, 331

vector potential 11, 30, 97, 120, 123, 141,
211, 239, 241,278

vertical flow 101-8, 163, 265, 331, 336-8

voltage probe 74-85, 93, 99-100, 129-31,
170, 182, 192

waveguides (see electron waveguides)
wave optics 2824

weak localization (see localization)
Wigner function 325-8

zero resistance 176-86
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